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Abstract
Shult [7] proved that every hyperplane of embeddable

Grassmann space of finite rank, arises from an embedding. In
this paper it is proved that the point-line geometry of type D,
(k=2, n=k+3) can be embedded in projective space and every

regular hyperplane -arises from an embedding using the result

in [7].
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Many authors interested in embeddability of some
geometeries in a projective space. Lynn Batten [4] found an
intimate relationship between affine and projective planes by
showing that any affine plane is embeddable in projective
plane. Cooperstein and Shult [3] showed that any geometric
hyperplane arises from an embedding for the following Lie-
incidence geometries: Ay, Dss and Eq;. Agreat effort has
been spent by Shult [8] showing that the half-spin geometry of
type D,, i1s embeddable in a projective space. Ronan Theory
[5] presented a basic tool for certain strong parapolar spaces to
show that whether the hyperplanes arise from an embedding.
It has been proved in [9] the embeddability of certain class of
geometries Dy, Dy, and D, In this paper we use the result in
[7] to prove the embeddability of the point-line geometry Dy,
k=2 and n2k+3. |
A subspace of apoint-line geometry I'=(P, L) is a subsét
XcP such that any line which has at least two of its incident
points in X has all of its incident points in X. (X) means the
intersection over all subspaces. containing X, where XcP.
Lines incident wi‘th more than two points are called thick lines,

those incident with exactly two points are called thin lines.
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(possibly o) for which there exist a chain of distinct subspaces
@=XoX,C ... <X, such that X; is singular for each i, Xi#X; , i
# j.  For example rank(@)=-1, rank({p})=0 where p is a point
and rank(/)=1 where / a line.

In a point-line geometry I'=(P, L), a path of lengthnis a
sequence of nt+1 (xg,xy,..,X,) where, (X;,X;:1) are collinear, x; is
called the initial point and x, is called the end point. A
geodesic from a point X to a point y is a path of minimal
possible length with initial point x and end point y. We denote
this length by dr(X, y).

A geometry I' is called connected if and only if for any
two of its points there is a path connecting them. A subset X
of P is said to be comvex if X contains all points of all
geodesics connecting two points of X.

A polar space is a point-line geometry I'=(P, L) satisfying
the axiom:
For each point-line pair (p, [) with p not incident with /; p is
collinear with one or all points of /, that is | p*I|=1 or else
pol. Clearly this axiom is equivalent to saying that p*is a

geometric hyperplane of I' for every point peP.
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A point-line geometry I'=(P, L) is called a projective
if and only if it satisfies the following conditions [5]:

(i) I" is alinear space; every two distinct points X, y in P lie
exactly on one line,

(ii) every two lines intersect in one point,

(iii) there are four points no three of them are on a line,

A point-line geometry ['=(P, L) is called a projective space
if the following conditions are satisfied:

(1) every two points lie exactly on one line ,

(i) ifly, L, are two lines /Nl #Q, then {1, I,) is a projective
plane. ({/;, I,) means the smallest subspace of I containing /,
and /;.)

A point-line geometry I'=(P, L) is called a parapolar
space if and only if it satisfies the following properties:

i- T' 1s a connected gamma space,

ii- For every line I; I* s not a singular subspace,

iii- For every pair of non-collinear points x, 'y; x ytis
either empty, a single point, or a non-degenerate polar space
of rank at least 2. .

If x,y are distinct points in P, and if [x "y '|=1, then (%, y)
is called a special pair, and if x*y" is a polar space, then (x,

y) is called a polar pair (or a symplectic pair). A parapolar
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pairs.

Embeddings.[6] Let I'=(P, L) be a point-line geomeitry,
that is, an incidence system of points P and lines L, such that
eaéh line is viewed as a set of points. A projective embedding
of a point-line geometry I into the projective space P(V) of all
proper subspaces of the vector space V is an injective mapping
e: P— projective points of P(V)=1-spaces of V such that

i- e(/) is a projective line for each / of L, and
ii- the image points e(P) span P(V).
Such an embedding is denoted by the symbol e: I'-> P(V).

A geometric hyperplane of a point-line geometry is a
proper subspace which meets each line non-trivially. Lete:
I'—> P(V) be a projective embedding of the point line geometry
['=(P,L). Suppose H is aprojective hyperﬁlane of P(V), the
set H(H):={xe5P| e(x)eH} is a hyperplane of I". A‘hyperplane
H of T is said to arise from the embedding e if and only if it
has the form H=H(H)

Morphisms of embeddings. Let 1:V—W be a semilinear
transfor- mation of vector spaces. This induces a partial
mapping of the corresponding proiective spaces P(V) and

P(W), sending points of P(V) not contained in kerz in P(V) to
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projective points of P(W). If e: I'>P(V) is a projective
embedding of the point-line geometry I', then composition
with the partial map t can Yyield a new embedding et if and
only if

i- Tis a surjective semilinear transformation, and

ii- for any point p and q of I', ker 1 meets the subspace
(e(p),e(q)) at the zero subspace of V. We call the transfer from
embedding e to embedding et a morphism of embeddings and
write e—>er . In general if we insist that e->e’ is a morphism
of embedding, it means that ¢=et fbr an appropriate semilinear
transformation 1. Ifker tis the zero Vectbr space, e and € are
said to be equivalent embeddings.

An embedding u: I'—>P(V) is said to be relatively universal
if and only if the existence of a morphism w—u implies w is
equivaiént to u.

2- Old results and Notations

Shult has proved in the following theorem that every
hyperplane of embeddable Grassmannspace of finite rank,
arises from an embeding. For characterization and
constfué‘tion_of A, x see [2] and [1]. "

2.1 Theorem [7]. LetI'=(P,L) be a Grassmann space of type

Ani(F), where F is a field, I1<k<n. Then every geometric
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P(W) where W is the k-fold wedge product of the n-space V
over F with itself.

For embeddings of different Lie incidence geometries, there
are three methods showing that every hyperplane arises from
embedding that have been successful.

Method 1. (Circuitry) A circuit C=(Xg,Xj,....,Xy1) In the
collinearity graph X=(P-H,~) is said to be decomposable if 1t is
the sum of circuits Cgy, Cy,...., In X such that each C; lies in
some symplecton S; of the parapolar space I'. We say that C is
minimal indecomposable if C is not decomposable and all
circuits of smaller length are decomposable.

By results of Ronan [5], for a strong parapolar space, it is
sufficient to show that for any hypgrplane H of T, that in the
subgraph of (P,~)induced on P-H, every circuit C is a sum of
triangles and 4-circuits.

Method 2. (Inductive construction of a functional) If e:
I'—-P(V) is the embedding, we wish to show that foreach
hyperplane H of IT', there exists a functional h:V—F of V such
that eoh vanishes on H but never vanishes on P-H. Inductively
there exists a family S of subgeometries of I" belonging to a

parameterized family of geometries containing I" and such that
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for each SeS, there exists by indﬁétion a functional |

Hg (e(S)) :==Wg —>F
Which vanishes on e(S-H) (if the Ilatter is empty, of cource,
hg=0). This method was used in [7].

Method 3. (The direct sum method) This method alsouse

induction indifferent way. We asume as before that e:
I'=>P(V) isrelatively universal. Again I is assumed to belong
a family of geometries parameterized by an integer-valued
function t. The theorem being proved asserts that for some
function 8 :Z~»Z, if dimV23(t(I")), then dimV=5(1(I'}) and
every hyperplane arises from embeding.. The geometries T’
must have the property that they always possess two
subgeometries S; and S; in the same parameterized family
satisfying

i~ (§,,8.)r=P, and

ti- S(T(S 1))+ 8(1(S2)} <3(v(I).

Induction on the S; immediately yields the fact that V=(e(8,))
® (e(S,)y and that dim{e(S))v =8(x(S;)). By induction, the
hyperplane H can be assumed to meet each S; properly at a

hyperplane H; of §; . One sets X to be all points x of H such

-
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codimension 2 in V. For x, yeX, one write

x~y if and only if U @ (x)=U ® (y).
The rest of the proof consists in showing that the graph (X,~)
is connected.

Summarizing known resuls, we have:

(Geometry Reference Method
E¢1 Dssand A,, | Cooperstein and Circuitry
Shult [3]
Half-spin Shult [8] Direct sum
geometry, Dy o
Ank, 25[(n+1)/2] Shult [7] Functional
method

We present some facts about the point-line geometry of
type D, that can be found in [9] and [10].
Construction of D, (F) [10]. Consider the polar space
A=C"(2n, F) that comes from a vector space V of dimension
2n over a finite field F=GF(g) with a symmetric hyperbolic
bilinear form B. §; is the .set of all totally isotropié i-
dimensional subspaces of V; 1<is<n-2. The two classes M,
M, consist of maximal totally isotropic n-dimensional
subspaces. Two n-spaces fall in the same class if their

intersection is of odd dimension.
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The geometry of type D, 1(F) is the point-line geometry (P,
L), whose set of points P is the collection of all k-dimensional
subspaces of the vector space V, and whose lines are the pairs
(A, B) where A is (k-1)-dimensional subspace of (k+1)-
subspace B-that is, the set of (k-1, k+I1)-subspaceof V. A
point C is incident with a line (A, B) if and only if AcCcB as
a subspaceé of V. ‘

To define the collinearity, let C, and C; be two point (the

points are the T.I k-spaces), then C, is collinear to C, if and
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Cyy=(k+1)-space.

The elements of the classes G; and G, are Grassmannian
geometries of type Ay x.

There are two kinds of symlecta (1) The first kind is the
convex polar spaces Aj, that represent the (k-2, k+2)
subspaces of V. Then symplecton S ofkind A is the set of
TI k-dimensional spaces that contain the T1 (k-2)-dimensional
space and confained in the TI (k+2)-dimensional space. (2)
The second kind of symplecta is the convex polar spaces of
type D11 that represent the collection of all TI (k-1)-
subspaces of V. Thus this kind of symplecta is defined as the
collection of all TI k-subspaces of V that contain such TI (k-
1 )-spaces.
2.2 Proposition [9]. Let I'=(P, L) be the geometry of type
D, (F). Thus:

i- I is of diameter k+1,.

ii- I' is a weak parapolar geometry.
3- The main result

Before proving the main theorem we need to present the

definition of the regular hyperplane and we show that the point
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geery n k is a g etrlcsuspaceo the Grassrnann
geometry A, .

3.1 Definition [9]. LetT be a sub-geometry of a geometry I
Let H be a hyperplane of I'. If there exist a hyperplane H' of I'
such that H=H'AI' we say that His a regular hyperplane of I"
with respect to T’ ', Otherwise we say that H is irregular with
respect to I,

For example if H' is a hyperplane of I, then K=H'~["isa
hyperplane of I' implies that K is regular with respect to T
3.2. Lemma I'=D,(F) is a geometric subspace ofI“\=An,k(F)
Proof. Let/be aline of I. We must show that if / has two of
its incident points in I' has all of its incident points in I
Suppose that p, q are the two incident points of / in I" andrisa
point incident with /. Then p and q form a TI (k+1)-space.
But r is incident with /, then it a k-space contained in the TI
(k+1)-space, so rel” and / is completely lying in . []

4.3. THE MAIN THEOREM LetI'=(P, L) be a geomeltry of
type Dy (F), where k 22 | n>k+3 and F is a field, then T can be
embedded in a projective space and every regular geometric
hyperplane arises from an embedding of T in a projective

space.
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Then by regularity there exist a geometric hyperplane H of
A (F) such that K=HnD,,. Since every hyperplane of A,y
arises from embedding. Then there exist an embedding i of
Aqzx into  P(V) such that. there exist H' a hyperplane of P(V)
with H=u"'(H"). We know that D, is a subspace of A, then
i (D, is a subspace of P(V) say there exist a vector subspace
W of V such that p'(D,)=P(W), H~P(W) is a hyperplane of
P(W). It follows that

K= p"'(H' P(W) " (Do)

=u" (H "P(W) )nDy .

i.e., K arises from embedding. [
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