Embedding and hyperplane of point-line geometry of type $D_{n,k}(F)$

Safa' Sadik^{*} Mohammed El-Atrash^{*} Abdelsalam Osman Abou Zayda^{*}

ملخص البحث

أثبت Shult المنتهي القابل للطمر أن كل مستوى فوقي $\mathbf{D}_{n,k}$ المنتهي القابل للطمر أن كل مستوى فوقي يأتي من الطمر. في هذا البحث نبرهن أن هندسة نقطة - خط من نبوع - - قابلة للطمر في فضاء إسقاطي وأن كل مستوى فوقي عادي يأتي من ذلك الطمر.

Abstract

Shult [7] proved that every hyperplane of embeddable Grassmann space of finite rank, arises from an embedding. In this paper it is proved that the point-line geometry of type $D_{n,k}$ ($k\geq 2$, $n\geq k+3$) can be embedded in projective space and every regular hyperplane arises from an embedding using the result in [7].

^{*}Professor of mathematics - Science College - Math. Department Ein-Shams University - Cairo, Egypt.

^{*}Associate professor of mathematics- Science College - Math. Department - Islamic University of Gaza - Gaza, Palestine - e-mail: matrash@mail.iugaza.edu.

Education College - Mathematics Department - Gaza, Palestine.

This paper was written in partial fulfillment of the requirement of PH.D. at the joint program of College of Education at Ein-Shams University (Cairo, Egypt) and the College of Education (Gaza, Palestine)

Introduction

Many authors interested in embeddability of some geometeries in a projective space. Lynn Batten [4] found an intimate relationship between affine and projective planes by showing that any affine plane is embeddable in projective plane. Cooperstein and Shult [3] showed that any geometric hyperplane arises from an embedding for the following Lieincidence geometries: $A_{n,2}$, $D_{5,5}$ and $E_{6,1}$. Agreat effort has been spent by Shult [8] showing that the half-spin geometry of type $D_{n,n}$ is embeddable in a projective space. Ronan Theory [5] presented a basic tool for certain strong parapolar spaces to show that whether the hyperplanes arise from an embedding. It has been proved in [9] the embeddability of certain class of geometries $D_{n,2}$, $D_{n,2}$ and $D_{n,3}$ In this paper we use the result in [7] to prove the embeddability of the point-line geometry $D_{n,k}$, $k \ge 2$ and $n \ge k+3$.

A subspace of a point-line geometry $\Gamma = (P, L)$ is a subset $X \subseteq P$ such that any line which has at least two of its incident points in X has all of its incident points in X. $\langle X \rangle$ means the intersection over all subspaces containing X, where $X \subseteq P$. Lines incident with more than two points are called *thick* lines, those incident with exactly two points are called *thin* lines.

The singular rank of a space Γ is the maximal number n (possibly ∞) for which there exist a chain of distinct subspaces $\phi \neq X_0 \subset X_1 \subset ... \subset X_n$ such that X_i is singular for each $i, X_i \neq X_j$, $i \neq j$. For example rank(ϕ)=-1, rank($\{p\}$)=0 where p is a point and rank(l)=1 where l a line.

In a point-line geometry Γ =(P, L), a path of length n is a sequence of n+1 ($x_0,x_1,...,x_n$) where, (x_i,x_{i+1}) are collinear, x_0 is called the initial point and x_n is called the end point. A **geodesic** from a point x to a point y is a path of minimal possible length with initial point x and end point y. We denote this length by $d_{\Gamma}(x, y)$.

A geometry Γ is called *connected* if and only if for any two of its points there is a path connecting them. A subset X of P is said to be *convex* if X contains all points of all geodesics connecting two points of X.

A **polar space** is a point-line geometry Γ =(P, L) satisfying the axiom:

For each point-line pair (p, l) with p not incident with l; p is collinear with one or all points of l, that is $|p^{\perp} \cap l| = 1$ or else $p^{\perp} \supset l$. Clearly this axiom is equivalent to saying that p^{\perp} is a geometric hyperplane of Γ for every point $p \in P$.

A point-line geometry Γ =(P, L) is called *a projective plane* if and only if it satisfies the following conditions [5]:

- (i) Γ is a linear space; every two distinct points x, y in P lie exactly on one line,
 - (ii) every two lines intersect in one point,
 - (iii) there are four points no three of them are on a line.

A point-line geometry Γ =(P, L) is called *a projective space* if the following conditions are satisfied:

- (i) every two points lie exactly on one line,
- (ii) if l_1 , l_2 are two lines $l_1 \cap l_2 \neq \emptyset$, then $\langle l_1, l_2 \rangle$ is a projective plane. $(\langle l_1, l_2 \rangle)$ means the smallest subspace of Γ containing l_1 and l_2 .)

A point-line geometry Γ =(P, L) is called *a parapolar* space if and only if it satisfies the following properties:

- i- Γ is a connected gamma space,
- ii- For every line l; l^{\perp} s not a singular subspace,
- iii- For every pair of non-collinear points x, y; $x^{\perp} \cap y^{\perp}$ is either empty, a single point, or a non-degenerate polar space of rank at least 2.

If x, y are distinct points in P, and if $|x^{\perp} \cap y^{\perp}| = 1$, then (x, y) is called a special pair, and if $x^{\perp} \cap y^{\perp}$ is a polar space, then (x, y) is called a polar pair (or a symplectic pair). A parapolar

space is called *a strong parapolar* space if it has no special pairs.

Embeddings.[6] Let Γ =(P, L) be a point-line geometry, that is, an incidence system of points P and lines L, such that each line is viewed as a set of points. **A projective embedding** of a point-line geometry Γ into the projective space $\mathbb{P}(V)$ of all proper subspaces of the vector space V is an injective mapping e: P \rightarrow projective points of $\mathbb{P}(V)$ =1-spaces of V such that

- i- e(l) is a projective line for each l of L, and
- ii- the image points e(P) span P(V).

Such an embedding is denoted by the symbol e: $\Gamma \rightarrow \mathbb{P}(V)$.

A geometric hyperplane of a point-line geometry is a proper subspace which meets each line non-trivially. Let e: $\Gamma \to \mathbb{P}(V)$ be a projective embedding of the point line geometry $\Gamma = (P,L)$. Suppose \mathbb{H} is a projective hyperplane of $\mathbb{P}(V)$, the set $\mathbb{H}(\mathbb{H}) := \{x \in P \mid e(x) \in \mathbb{H}\}$ is a hyperplane of Γ . A hyperplane \mathbb{H} of Γ is said to arise from the embedding \mathbb{H} if \mathbb{H} is the form $\mathbb{H} = \mathbb{H}(\mathbb{H})$

Morphisms of embeddings. Let $\tau:V\to W$ be a semilinear transfor- mation of vector spaces. This induces a partial mapping of the corresponding projective spaces P(V) and P(W), sending points of P(V) not contained in $\ker \tau$ in P(V) to

projective points of P(W). If e: $\Gamma \rightarrow P(V)$ is a projective embedding of the point-line geometry Γ , then composition with the partial map τ can yield a new embedding e τ if and only if

i- tis a surjective semilinear transformation, and

ii- for any point p and q of Γ , ker τ meets the subspace $\langle e(p), e(q) \rangle$ at the zero subspace of V. We call the transfer from embedding e to embedding et *a morphism of embeddings* and write $e \rightarrow e \tau$. In general if we insist that $e \rightarrow e'$ is a morphism of embedding, it means that $e' = e \tau$ for an appropriate semilinear transformation τ . If ker τ is the zero vector space, e and e' are said to be *equivalent embeddings*.

An embedding u: $\Gamma \rightarrow P(V)$ is said to be relatively universal if and only if the existence of a morphism w \rightarrow u implies w is equivalent to u.

2- Old results and Notations

Shult has proved in the following theorem that every hyperplane of embeddable Grassmannspace of finite rank, arises from an embeding. For characterization and construction of $A_{n,k}$ see [2] and [1].

2.1 Theorem [7]. Let Γ =(P,L) be a Grassmann space of type $A_{n,k}(F)$, where F is a field, 1<k<n. Then every geometric

hyperplane of Γ arises from the universal embedding of Γ in P(W) where W is the k-fold wedge product of the n-space V over F with itself.

For embeddings of different Lie incidence geometries, there are three methods showing that every hyperplane arises from embedding that have been successful.

Method 1. (Circuitry) A circuit $C=(x_0,x_1,...,x_{n-1})$ in the collinearity graph $X=(P-H,\sim)$ is said to be *decomposable* if it is the sum of circuits C_0 , C_1 ,...., in X such that each C_i lies in some symplecton S_i of the parapolar space Γ . We say that C is *minimal indecomposable* if C is not decomposable and all circuits of smaller length are decomposable.

By results of Ronan [5], for a strong parapolar space, it is sufficient to show that for any hyperplane H of Γ , that in the subgraph of (P,\sim) induced on P-H, every circuit C is a sum of triangles and 4-circuits.

Method 2. (Inductive construction of a functional) If e: $\Gamma \rightarrow P(V)$ is the embedding, we wish to show that for each hyperplane H of Γ , there exists a functional h:V \rightarrow F of V such that e-h vanishes on H but never vanishes on P-H. Inductively there exists a family S of subgeometries of Γ belonging to a parameterized family of geometries containing Γ and such that

the restriction of e to S in S is still relatively universal. Then for each $S \in S$, there exists by induction a functional

$$H_S : \langle e(S) \rangle := W_S \rightarrow F$$

Which vanishes on e(S-H) (if the latter is empty, of cource, $h_S=0$). This method was used in [7].

Method 3. (The direct sum method) This method also use induction indifferent way. We assume as before that e: $\Gamma \rightarrow P(V)$ is relatively universal. Again Γ is assumed to belong a family of geometries parameterized by an integer-valued function τ . The theorem being proved asserts that for some function $\delta: Z \rightarrow Z$, if $\dim V \ge \delta(\tau(\Gamma))$, then $\dim V = \delta(\tau(\Gamma))$ and every hyperplane arises from embeding. The geometries Γ must have the property that they always possess two subgeometries S_1 and S_2 in the same parameterized family satisfying

i- $\langle S_1, S_2 \rangle_{\Gamma}$ =P, and

ii- $\delta(\tau(S_1))+\delta(\tau(S_2)) \le \delta(\tau(\Gamma))$.

Induction on the S_i immediately yields the fact that $V=\langle e(S_1)\rangle$ \oplus $\langle e(S_2)\rangle$ and that $dim\langle e(S_i)\rangle_V=\delta(\tau(S_i))$. By induction, the hyperplane H can be assumed to meet each S_i properly at a hyperplane H_i of S_i . One sets X to be all points x of H such

that e(x) is not in the subspace $U:=\langle e(H_1)\rangle \oplus \langle e(S_2)\rangle$ of codimension 2 in V. For $x, y \in X$, one write

 $x\sim y$ if and only if $U \oplus \langle x \rangle = U \oplus \langle y \rangle$.

The rest of the proof consists in showing that the graph (X,\sim) is connected.

Summarizing known resuls, we have:

Geometry	Reference	Method
E _{6,1,} D _{5,5} and A _{n,2}	Cooperstein and Shult [3]	Circuitry
Half-spin geometry, D _{n,n}	Shult [8]	Direct sum
$A_{n,k}, 2 \le [(n+1)/2]$	Shult [7]	Functional method

We present some facts about the point-line geometry of type $D_{n,k}$ that can be found in [9] and [10].

Construction of $D_{n,k}$ (F) [10]. Consider the polar space $\Delta = \Omega^+(2n, F)$ that comes from a vector space V of dimension 2n over a finite field F=GF(q) with a symmetric hyperbolic bilinear form B. S_I is the set of all totally isotropic idimensional subspaces of V; $1 \le i \le n-2$. The two classes M_1 , M_2 consist of maximal totally isotropic n-dimensional subspaces. Two n-spaces fall in the same class if their intersection is of odd dimension.

The geometry of type $\mathbf{D}_{n,k}(\mathbf{F})$ is the point-line geometry (P, L), whose set of points P is the collection of all k-dimensional subspaces of the vector space V, and whose lines are the pairs (A, B) where A is (k-1)-dimensional subspace of (k+1)-subspace B-that is, the set of (k-1, k+1)-subspace of V. A point C is incident with a line (A, B) if and only if A \subset C \subset B as a subspaces of V.

To define the collinearity, let C_1 and C_2 be two point (the points are the T.I k-spaces), then C_1 is collinear to C_2 if and

only if the intersection of $C_1 \cap C_2 = (k-1)$ -space and $\langle C_1, C_2 \rangle = (k+1)$ -space.

The elements of the classes \mathbb{G}_1 and \mathbb{G}_2 are Grassmannian geometries of type $A_{n-1,k}$.

There are two kinds of symlecta (1) The first kind is the convex polar spaces $A_{3,2}$ that represent the (k-2, k+2) subspaces of V. Then symplecton S of kind $A_{3,2}$ is the set of TI k-dimensional spaces that contain the TI (k-2)-dimensional space and contained in the TI (k+2)-dimensional space. (2) The second kind of symplecta is the convex polar spaces of type $D_{n-k+1,1}$ that represent the collection of all TI (k-1)-subspaces of V. Thus this kind of symplecta is defined as the collection of all TI k-subspaces of V that contain such TI (k-1)-spaces.

2.2 Proposition [9]. Let Γ =(P, L) be the geometry of type $D_{n,k}(F)$. Thus:

i- Γ is of diameter k+1,.

ii- Γ is a weak parapolar geometry.

3- The main result

Before proving the main theorem we need to present the definition of the regular hyperplane and we show that the point line geometry $D_{n,k}$ is a geometric subspace of the Grassmann geometry $A_{n,k}$.

3.1 Definition [9]. Let Γ be a sub-geometry of a geometry Γ' . Let H be a hyperplane of Γ . If there exist a hyperplane H' of Γ' such that $H=H'\cap\Gamma$ we say that H is a regular hyperplane of Γ with respect to Γ' . Otherwise we say that H is irregular with respect to Γ' .

For example if H' is a hyperplane of Γ' , then $K=H'\cap\Gamma$ is a hyperplane of Γ implies that K is regular with respect to Γ' .

- **3.2. Lemma** $\Gamma = D_{n,k}(F)$ is a geometric subspace of $\Gamma = A_{n,k}(F)$. **Proof.** Let l be a line of Γ . We must show that if l has two of its incident points in Γ has all of its incident points in Γ . Suppose that p, q are the two incident points of l in Γ and r is a point incident with l. Then p and q form a TI (k+1)-space. But r is incident with l, then it a k-space contained in the TI (k+1)-space, so $r \in \Gamma$ and l is completely lying in Γ . \square
- **4.3. THE MAIN THEOREM** Let Γ =(P, L) be a geometry of type $D_{n,k}(F)$, where $k \ge 2$, $n \ge k+3$ and F is a field, then Γ can be embedded in a projective space and every regular geometric hyperplane arises from an embedding of Γ in a projective space.

Proof. Let K be a regular geometric hyperplane of $D_{n,k}(F)$. Then by regularity there exist a geometric hyperplane H of $A_{n,k}(F)$ such that $K=H\cap D_{n,k}$. Since every hyperplane of $A_{n,k}$ arises from embedding. Then there exist an embedding μ' of $A_{n,k}$ into P(V) such that there exist H' a hyperplane of P(V) with $H=\mu^{l-1}(H')$. We know that $D_{n,k}$ is a subspace of $A_{n,k}$, then $\mu'(D_{n,k})$ is a subspace of P(V) say there exist a vector subspace W of V such that $\mu'(D_{n,k})=P(W)$, $H'\cap P(W)$ is a hyperplane of P(W). It follows that

$$\begin{split} K &= \mu^{\text{l-1}}(H^{\text{l}} \cap P(W) \cap \mu^{\text{l}}(D_{n,k})) \\ &= \mu^{\text{l-1}}(H^{\text{l}} \cap P(W)) \cap D_{n,k} \end{split}$$

i.e., K arises from embedding.

References

- [1] Cohen A. M. and Cooperstein B. N., "A characterization of some geometries of Lie type", *Geom. Dedicata* 15: 73-105, 1983.
- [2] Cooperstein B. N., "A characterization of some Lie incidence structures", Geom. Dedicata 6: 205-258, 1977.
- [3] Cooperstein B. N. and Shult E. E., "Geometric Hyperplane of Lie Incidence Geometries", Geom. Dedicata 64: 17-40, 1997.
- [4] Lynn Margaret Batten, "Combinatorics of finite goemetries" QA167.2.B38, Cabridge University, 85-7829, (1986).
- [5] Ronan M. A., "Embedding and Hyperplanes of Discrete Geometries", *Europ. Combinatorics* 8: 179-185, 1987.
- [6] Shult E. E., "Embeddings and Hyperplanes of Lie Incidence Geometries", Proc. Conference on groups and geometries of Lie type, Como., June 22, (1993).
- [7] Shult E. E., "Geometric Hyperplanes of embeddable Grassm- annians", J. Algebra 145: 55-82, 1992.
- [8] Shult E. E., "Geometric Hyperplanes of the Half-Spin Geometries arise from Embeddings", Geom. Dedicata 33: 5-20, 1990.
- [9] Zayda Abdelsalam, "Embedding and hyperplanes of point-line geometry of type $D_{n,k}$, k=2,3,4" Ph.D. Thesis, Ain Shams University, Cairo, Egypt. (2002).
- [10] Zayda Abdelsalam and El-Atrash Mohammed, "On properties of point-line geometry of type $D_{n,k}(F)$ ", (To appear).