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| Abstract

Shult [7] proved that every hyperplane of embeddable Grassmann
space of finite rank, arises from an embedding. In this paper it is
proved that the point-line geometry of type D,y (k22, n2k+3) can be
embedded in projective space and every regular hyperplane arises
from an embedding using the result in [7].
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Introduction

Many authors are interested in embeddability of some geometeries in
a projective space. Lynn Batten [4] found an intimate relationship between
affine and projective planes by showing that any affine plane is embeddable
in projective plane. Cooperstein and Shult [3] showed that any geometric
hyperplane arises from an embedding for the following Lie-incidence
geometries: Ay Dss and Ee .
A great effort has been spent by Shult [8] showing that the half-spin
geometry of type Dy, is embeddable in a projective space. Ronan Theory
[5] presented a basic tool for certain strong parapolar spaces to show that
whether the hyperplanes arise from an embedding. It has been proved in [9]
the embeddability of certain class of geometries Dy, D2 and Dy 3 In this
paper we use the result in [7] to prove the embeddability of the point-line
geometry Dy, k>2 and n2k+3.

A subspace of a pbint-fine geometry I'=(P, L) is a subset XcP such that
any line which has at least two of its incident points in X has all of its
incident points in X. (X} means the intersection over all subspaces
containing X, where XcP. Lines incident with more than two points are
called thick lines, those incident with exactly two points are called thirn
lines.

The singular rank of a space I is the maximal number » (possibly o)
for which there exist a chain of distinct subspaces p#XocX,c ... X, such
that X; Is singular for each i/, X#Xj , 7 # j. For example rank(p)=-1,
rank({p})=0 where p is a point and rank(/)=1 where [ a line.

In a point-line geometry I'=(P, L), a path of length n is a sequence of

ntl (X0.X1,...Xn) Where, (X;,X;+1) are collinear, x; is called the initial point
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and x, is called the end point. A geedesic from a point X to a point y is a

path of minimal possible length with initial point x and end point y. We
denote this length by dr(x, ).

A geometry I is called connected if and only if for any two of its points
there is a path connecting them. A subset X of P is said to be convex if X
éontains all points of all geodesics connecting two points of X.

A polar space is a point-line geometry I'=(P, L) satisfying the axiom:
For each point-line pair (p, /) with p not incident with /; p is collinear with
one or all points of /, that is | p*ni|=1 or else p'ol. Clearly this axiom is
equivalent to saying that p" is a geometric hyperplane of I" for every point
peP,

4 point-line geometry I'=(P, L) is called a projective plane if and only
if it satisfies the following conditions [5]:

(i) I" is a linear space; every two distinct points x, y in P lie exactly on
one line,

(ii) every two lines intersect in one point,

(1ii) there are four points no three of them are on a line.

4 point-line geometry I'=(P, L) is called a projective space if the

following conditions are satisfied:

(1) every two points lie exactly on one line ,

(i) if 1, I are two lines /y~h %3, then (/y, b is a projective plane. (1,
1) means the smallest subspace of I" containing /; and /.)

A point-line geometry I'=(P, L) is called a parapolar space if and only
if it satisfies the following properties:

i- I is a connected gamma space,

ii- For every line /; I' s not a singular subspace,
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iii- For every pair of non-collinear points x, v; X'y is either empty, a
single point, or a non-degenerate polar space of rapk at least 2.

If x, y are distinct points in P, and if I"nyt=1, then (x, v) is called @
special pair, and if xinyL is a polar space, then (x, y) is called a polar pair
(or a symplectic pair). A parapolar space is called a strong parapolar space
if it has no special pairs.

Embeddings.[6] Let I'=(P, L) be a point-line geometry, that is, an
incidence system of points P and lines L, such that each line is viewed as a
set of points. A4 projective embedding of a point-line geometry T into the
projective space P(V) of all proper subspaces of the vector space V is an
injective mapping e: P—> projective points of P(V)=1-spaces of V such that

i- e(l) is a projective line for each / of L, and
ii- the image points e(P) span P(V).
Such an embedding is flenoted by the symbol e: I'— P(V).

A geometric hyperplane of a point-line geometry is a proper subspace
which meets each line non-trivially. Let e: I'—= P(V) be a projective
embedding of the point line geometry I'=(P,L). Suppose H is a projective
hyperplane of P(V), the set HH)={xe Ple(x)eH} is a hyperplane of . A
hyperplane H of " is said to arise from the embedding ¢ if and only if it has
the form H=H(H) .

Morphisms of embeddings. Let t:V—>W be a semilinear transformation
of vector spaces. This induces a partial mapping of the corresponding
projective spaces P(V) and P(W), sending points of P(V) not contained in
kerz in P(V) to projective points of P(W). If e: I'=>P(V) is a projective

embedding of the point-line geometry I', then composition with the partial
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map T can yield a new embedding er if and only if it satisfies the following

conditions:

i~ 1 is a surjective semilinear transformation, and

ii- for any point p and g of I', ker © meets the subspace {e(p),e(q)) at the
zero subspace of V. We call the transfer from embedding e to embedding et
a morphism of embeddings and write e—»er . In general if we insist that
e—¢ is a morphism of embedding, it means that ¢’=et for an appropriate
semilinear transformation t. If ker t is the zero vector space, ¢ and & are
said to be equivalent embeddings.

An embedding u: T—P(V) is said to be relatively universal if and only
if the existence of a morphism w~>u implies w is equivalent to u.
2- Old results and Netations

Shult has proved in the following theorem that every hyperplane of
embeddable Grassmannspace of finite rank, arises from an embeding. For
characterization and construction of Any see [1-2].
2.1 Theorem [7]. Let I'=(P,L) be a Grassmann space of type Api(F), where
F is a field, 1<k<n. Then every geometric hyperplane of I" arises from the
universal embedding of " in P(W) where W is the k-fold wedge product of
the n-space V over F with itself,
For embeddings of different Lie incidence geometries, there are three

methods showing that every hyperplane arises from embedding that have

been successful.
Method 1. (Circuitry) A circuit C=(X0,X1,..--%n-1) in the collinearity graph
=(P-H,~) is said to be decomposable if it is the sum of cireuits Cy, Cy,....,

in X such that each C; lies in some symplecton S; of the parapolar space T,
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We say that C is minimal indecomposable if C is not decomposable and all
circuits of smaller length are decomposable.
Using results of Ronan [5], for a strong parapolar space, it is sufficient to
show that for any hyperplane H of T, that in the subgraph of (P,~) induced
on P-H, every circuit C is a sum of triangles and 4-circuits.
Method 2. (Inductive construction of a functional) If e: [ =P(V) is the
embedding, we wish to show that for each hyperplane H of I', there exists a
functional h:V-F of V such that e-h vanishes on H but never vanishes on P-
H. Inductively there exists a family S of subgeometries of I belonging to a
parameterized family of geometries containing I' and such that the
restriction of e to S in S is still relatively universal. Then for each SeS§,
there exists by induction a functional

Hs {e(S)) =Ws >F
Which vanishes on e(S-H) (if the latter is empty, of cource, hg=0). This
method was used in [7].
Method 3. (The direct sum method) This method also uses induction
indifferent way. We asume as before that e: I'>P(V) is relatively universal.
Again I is assumed to belong a family of geometries parameterized by an
integer-valued function 1. The theorem being proved asserts that for some
function 8 :Z—Z, if dimV=28(z(I)), then dimV=8(t(I")) and every
hyperplane arises from embedding. The geometries I must have tﬁe
property that they always possess two subgeometries S; and S; in the same
parameterized family satisfying
i (81,S2)r=P, and
ii- 3(T(S1)F 8(1(S2)) <6(x(1)-
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Induction on the S; immediately yields the fact that V=(e(8,)) ® (e(S-)) and

that dim{e(S;))v =5(t(S;)). By induction, the hyperplane H can be assumed
to meet each S; properly at a hyperplane H; of S;. One sets X to be all
points x of H such that e(x) is not in the subspace U:=(e(H;)) ® (e(8,)) of
codimension 2 in V. For x, yeX, one write

x~y if and only if U @ (x)=U @ (y).
The rest of the proof consists in showing that the graph (X,~) is connected.

Summarizing known resuls, we have:

Geometry Reference Method
B¢y Dssand Ayy | Cooperstein and Shult Circuitry
[3]
Half-spin geometry, Shult {8] Direct sum
Dn,n
Ank, 2<[(n+1)/2] Shult [7] Functional method

We present.some facts about the point-line geometry of type Dy that
can be found in [9, 10].

Construction of Dy (F) [10]. Consider the polar space A=Q"(2n, F) that
comes from a vector space V of dimension 2n over a finite field F=GF(q)
with a symmetric hyperbolic bilinear form B. 8 is the set of all totally
isotropic i-dimensional subspaces of V; 1<i<n-2. The two classes My, M,
consist of maximal totally isotropic n-dimensional subspaces. Two n-spaces

fall in the same class if their intersection is of odd dimension.
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Dn,k(F )

The geometry of type D, (F) is the point-line geometry (P, L), whose
set of points P is the collection of all k-dimensional subspaces of the vector
space V, and whose lines are the pairs (A, B) where A is (k-1)-dimensional
subspace of (k+1)-subspace B—that is, the set of (k-1, k+1)-subspace of V.
A point C is incident with a line (A, B) if and only if AcCcB as a
subspaces of V.

To define the collinearity, let C; and C; be two points (the points are the
T.I k-spaces), then C is collinear to C; if and only if the intersection of
CiMCy=(k-1)-space and (C;, Cp)=(k+1)-space.

The elements of the classes Gy and G, are Grassmannian geometries of
type Apg k-

There are two kinds of symlecta. The first kind is the convex polar
spaces Az that represents the (k-2, k+2) subspaces of V. Then symplecton
S of kind Aj; is the set of TI k-dimensional spaces that contain the T1 (k-2)-
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dimensional space and contained in the TI (k+2)-dimensional space. (2)

The second kind of symplecta is the convex polar spaces of type Dyk+1 1 that
represents the éoilection of all TI (k;i)-subspaces of V. Thus this kind of
symplecta is defined as the collection of all TT k-subspaces of V that contain
such TI (k-1)-spaces.

2.2 Propesition [9]. Let IT'=(P, L) be the geometry of type Dy i(F). Thus:

i- I' is of diameter k+1,.

ii- I' is a weak parapolar geomet}y;
3- The main result

Before proving the main theorem we need to present the definition of
the regular hyperplane and we show that the point line geometry Dy is a
geometric subspace of the Grassmann geometry Ay .
3.1 Definition [9). Let I be a sub-geometry of a geometry I". Let Hbe a
hyperplane of I'. If there exist a hyperplane H' of T" such that H=H'"I" we
say that H is a regular hyperplane of I" with respect to I". Otherwise we say
that H is irregular with respect to I
For example if H' is a hyperplane of I", then K=H'"T" is a hyperplane of I’

implies that K is regular with respect to "

3.2. Lemma I'=D.(F) is a geometric subspace of F\EA-,.,;{(F)
Proof. Let ! be a line of I". We must show that if / has two of its incident

points in I has all of its incident points in I'. Suppose that p, q are the two
incident points of /in I" and r is a point incident with /. Then p and g form a
TI (k+1)-space. But r is incident with /, then it a k-space contained in the TI
(k+1)-space, so rel” and / is completely lying in I
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4.3. THE MAIN THEOREM Ler T=(P, L) be a geometry of type Dy (F),

where k 22 , n2k+3 and F is a field, then 1" can be embedded in a projective
space and every regular geometric hyperplane arises from an embedding of
I" in a projective space.

Proof. Let K be a regular geometric hyperplane of Dyw(F). Then by
regularity there exists a geometric nyperplane H of A,x(F) such that
K=HnD,x Since every hyperplane of Ayy arises from embedding. Then
there exists an embedding p' of Anx into P(V) such that there exists H' a
hyperplane of P(V) with H=p"'(H"). We know that D, is a subspace of
Ank, then p' (Dyy) is a subspace of P(V) say there exists a vector subspace
W of V such that 1Dy )=P(W), HNP(W) is a hyperplane of P(W). It
follows that

K= (@ APW) n' (Do)
=u"(H NP(W) ) Dy

i.e., K arises from embedding.
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