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Abstract

In this paper an explicit finite-difference time-domain (FDTD) approach
for solving the wave equation in nonlinear optical waveguiding rectangular
structure is proposed. The wvalidity of the proposed technique is
demonstrated through its applications on a rectangular four layers
waveguide structure where one layer is a nonlinear medium. The stability

conditions are also derived and tested.
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Intreduction

The Finite-Difference Time-Domain (FDTD) scheme [1,2] has shown a
great popularity for high frequency electromagnetic problems, because it is
an efficient and easy to program. The advantages of these techniques are in
terms of its accuracy, generality, computational efficiency, and ease of use.
Since the optical waveguides are defined by a two-dimensional distribution
of the index of refraction, the most accurate methods must treat the full (2-
D) problem. Unfortunately, the computer memory and time requirements
are such that it is impossible to solve a realistic (2-D) problem on a PC or
workstation. As a consequence, the problem is usually reduced to a
somewhat equivalent one-dimension problem. The continuous exploration
of new optical device concepts for applications in communications and
signal processing has been recently leading to possibility of using the
nonlinear property of materials. Examples of nonlinear devices are switches,
couplers, beam steerers, and logical elements [3-6]. Nonlinearity provides
the designer an added degree of design flexibility. With the growing
complexity of nonlinear device structures, approximate analytical
techniques become inadequate. So more accurate, and efficient numerical
techniques are sought. In the past few years the Finite-Difference Time-
Domain (FDTD) method has emerged as one of the most versatile numerical
methods in optical waveguide analysis because it can readily incorporate
almost any type of constitutive relation describing the medium in use,
including nonlinear media. By directly solving Maxwell’s equations
simultaneously with the medium constitutive relation in the time domain,
the method fully accounts for the effects of reflection, diffraction, radiation,

and suitable nonlinear effects that cannot otherwise be predicted by
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approximate analytical or other numerical techniques. A simple application
of the FDTD method to nonlinear media employs an explicit time-stepping
scheme in the discretization where the nonlinear permittivity at the
unknown time step N+1 is approximated using the electric-field value at the
current time step N [3,7]. The scheme allows the unknown field at time step
N+1 to be explicity solved for, but it places a severe stability constraint on
the time step and mesh size. In some cases, the time step has to be reduced
20-30 times below the limit set by the Courant-Fridrichs-Lewy (CFL)
condition to achieve stability in the nonlinear medium regions [7]. On a
more fundamental level, the above scheme introduces an artificial time leg
equal to the time step Afin the medium response because the electric
displacement D) at the time step N+1 is computed using the electric field £ at
the same time step and permittivity value at the previous time step N. To
eliminate this artificial time leg, Josef and Tavlove proposed an iterative
solution of the nonlinear N maxwell equations [6,8]. In this paper , we
extend this idea to general media characterized by instantaneous nonlinear
permittivity £ and conductivity & by introducing an explicit FDTD
scheme. We also check the consistence , convergent and stability by using

Fourior or Von Neomann method developed by J. Von Neumann [9].
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Theory and discussion
The explicit FDTD method scheme yields a stable and efficient algorithm for
solving Maxwell’s equations in nonlinear media in the time domain. In a two-
dimensional (2-I)) waveguiding structure, the propagation of TE-polarized light is
governed by a scalar-wave equation in terms of a single electric-field component

Ey as follows:

B(cE,) 1 8(s,E,) 0'(E,) 8°(E)
+77 > ;T 2 (1)
ot ¢ ot x oz
In the above equation, ¢ is the velocity of light in vacuum, O is the electric

Ho

conductivity, and & s the relative permittivity. For nonlinear medium, & is a
r e

function of the electric field. For instance, the relative permittivity of a material
having instantaneous Kerr-type [10,11]nonlinearity which can be expressed as
etvlf
g, =g, +a|E,

T

L .
where & is the linear relative permittivity and ¢ is the nonlinear coefficient. In the
P

finite~difference time-domain method, the computatibna] domain is partitioned

into a grid of size Ax and Az as seen in Figure (1).

The region in (x,,1) space is covered by the rectangular grids parallel to the axes.

The lines X=X, , Y=Y, and I ={y are called the grid lines and their

intersections are called the mesh points of the grid. At each interior mesh point

(x,, 3.ty for i, j=12,...k and N =1,2,....M , Eq. (1) is satisfied and we have
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The simplest replacement of Eq. (2) consists of approximating the space and
time derivative by central second order difference , and the forward
difference for first time derivative is given by:

a_E(x‘ 2 ty)= E(xz: J=tN+l) E(xwzjstN) la E
o TN I 2 52

(xiﬂzJ3TN) (3)

where 7, €(ty,ty +1), 1= At
The central difference for second space derivative with respect to x, z and ¢

are, -
_@_2_._@ ; '(xt- tN) ZE(XJ,Z IN)—E-E(x +h,z _]-"rN)
ax (x”ZJ: N)""““ hz 4
e “)
12 34 (‘fz:z_;stN)
where & e (x, ~h,x, +h), h=Ax.
PE E(x;,2; —kty) = 2E(x, 2,1y + E(x,2; + R ty)
2 Gzt = 2
x ¢ )
k2 &'
4( >§j:rN)
where ¢ e(zj ~k,z, +k), k=Az.
And
%K B(x;, 2ty =)~ 2E(x;,2 5,0y )+ E(x;, 2,y +1)
2 (xJ,:ZJth)'W 7
ot /
(6)
I?8'E
STRTRGIIRZY

where w, € (ty — 1,1, +1)

Substituting Eqs. (3-6) into Eq. (2) we get,
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Fig. 1 Grid points for two space dimension
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E(x,, =kt ) —2E(x;, 2t )+ Elx,,z, +k,t,) k2 34
: . kgj - . - 12 624 ( z:ngrN) (7)

Assuming 4, k and / are sufficiently small allowing us to ignore the local
truncation error for each term in Eq. (7). Denoting the approximate value of

Eyat (x;,z;,4,)by E,, y(ie E,  , ~E(x,,2,,t,)), the approximate value

of EY at (xi s Zj 7tN+l ) by E!,J,NH and so forth, Eq. (7) reduced to

OF,  vn = OE ;y  &F y1—~26E  +eE, N4l

! ‘ o+ =
E  xn—2E  y +EL N E, .y —2E aw FE g
h2 + k2
Eq. (8) is then solved for the unknown field at time step N+1 at each node,

®)

The unknown field at time N+1 can be explicitly expressed in terms of
linear or nonlinear permittivity s,in linear and nonlinear medium
respectively, the conductivity o and the known field value at time step N

and N-1. So this method known as explicit method since the electric field is

given explicitly, it has truncation error

| 9%E 2 4
E”é“y(xpzj,fw)+E“é;;(xf,zjaufgv)
K A'E k* 8'F

12 (51: ]JtN) 6 (xz:é’j:tN)
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Stability, consistence and convergent

In the non conducting electric media (o = 0), Eq.(8) becomes
&y Ei,j,N-—I - 2‘5‘5““Ef:i,j,{\«’ + grEi,j,NH _

(ch)? ©
Eiagn — 2B ;8 HEq N ) Eiian — 28 ;8 Y E jan
B m ;2

“ 2 2
. { [
Letting Ax=Az=h, (je. k=h) and r= [ h:”z } = [-f;—;—‘—ﬁ;) . Eq.(9) can

then be rewritten as:
E,,’J‘N,,l +E g =2-40E, ’”(E,-_l,j,.w + EH_,‘J,N o+ E,MN + E;_M_N Y(10)

T

Let ¢,y =E ~k,  yus where E, ., and E, ., are the exact and

g N+

the computational solution of Eq.(10) respectively. Since FE,, . and

Ei,\;‘,Na—! satisfy Eqg. (10), we get :

¢

€ inas TN T (2- 4r)ef,j,fv +r(e n e TN T e;._,'+;,,\f) (11)

Assume that the error function E(x,z,0)in x-z plane at f = 0 can be
represented by Fourier series as [9]

E(x,z,0) = §’:G§":O Ai’jeﬁh"”e\fwwﬂ (12)
=0 j=

where A;; are the Fourier coefficients and can be neglected , 4,,and y  are

the frequencies, and N+1, M+1 are the mesh points in the x-z plane .

Because of the linearity of the partial differential equation, we need to

N-lix w/jl/ z

consider only the effect of terms e and e where 4 and y are

constants, To investigate the propagation of these terms as ¢ increases, we
put

‘J:"E}in eﬁﬁz"f e.fuN

e(x;,2,,ty) =e =€y (13)
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Now we need to investigate how e™" the ampliﬁcation factor, wili behave
as we proceed to ¢, +1 or N+1. We need to determine whether the
amplitude of the error will grow or die as we proceed to the next time level
N+1.

Substitute Eq.(13) in Eq.(11) we get

eﬁatheﬁ?ﬁjheA(N VN eﬁame\/ﬁ@hez(wmm

. (2+4r)eﬁaiheﬁﬁjhe,%Nl

eﬁa(fq)heﬁﬁhewt N eﬂa(iﬂ)heﬂwheuw +
4 e«fffafheﬁ(j_l)jhewz N eﬁ?afheﬁﬁ(jmhemw

N aih e Ny o MM

(14)

Dividing each term of Eq. (14) by € t
e =(2-4r)+ r(e”‘m“h rel g By emﬁhi (15)
Using '™ = cos A + - 1sin Akin Eq. (15) we get

Al

e¥ +e ¥ =(2~4r)+ r(2cos ah + 2 cos fh) (16)

Using cosah =1+ 2sin® %ﬁ in Eq. (16), yielding

et et =2—4r[sin 5 v 4 51117 s ) (17)
If we multiply both sides of Eq. (17) by e we get
(e’)? —24e* +1=0 (18)
where
' A=1+2r(sin2%’1+sin“—6;—] | (19)

Hence the value of e? are

1 1
(), = A+(4* -1)? and ("), = 4~ (4> -1)?
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As E does not increase exponentially with ¢ and because the difference
equation is a three time level approximation, a necessary condition for

stability is that [12]

eﬂ’i <1
As r,c and farereal, 4<1 by Eq. (19).
When A4 < ~1, (e“)zl > 1 gives instability.

When ~154<1, 47 €1,

! !
(e*), = A+i(1- 4% , (e"),=A-i(1- 4*)?
{
Hence ™), =l =147 + (1~ 47 )b =1,
showing that the necessary condition for stability is ~1<4<1 . By Eq.
(19),

——I<1~2r(sm —2-+sm i ) (20)
The only useful inequality 1s '

~1<1-2rsin _anm”%J (21)
giving r< I/(sin %]3 + sin %}i) , then Eq.(20) is satisfied. Since
¢ and f are arbitrary, » < —12~ df Ax# Az, ie. h=#k,then

—131—2(;‘ sin %+rsm2§m]_ (22)

2 2
cl BN
Fe = hel?” and 7, = PIRIE

The only useful inequality is
-—131——2(1‘ sin> %w stﬁJ (23)

where

Since a and g are arbitrary, then (r, +7.) <1 by substitution about 7, 7,

in the last inequality we get the Courant-Fridrichs-Lewy (CFL) condition
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1 |
e ) 1,1 1 (24)
g, (&) (A7)
where Ax=h, Az=k and Al=1.
The stability condition in the nonlinear medium regions is given by [13]

-t
8 1 1
OE,  u (E,E),-,,-,N} {(Ax)2 i (Az)? :isi )

The term consistency means that the difference equation approximates the

(cAt)? {

required partial differential equation and not other partial equation.
Alternatively, we can say that the differential equation is a compatible with
the required differential equation if the local truncation error of Eq. (1) goes

to zero as A, k,I — 0, no matter how this limit is taken. The real importance

of the concept of consistency lies in a theory by Lax Equivalence Theorem
[14], which states that if a linear finite-difference equation is a consistence
with a properly posed linear initial value problem then stability guarantees
the convergence.

The term convergent means that the difference between the exact solution

and the exact finite-difference approximation as h, k,/ — 0.

Finally we conclude that Eq. (1) is a stable, consistence and convergent.

Results and comments

Figure (2) shows the structure of a slab waveguide {13]. A finite cross
section is defined by enclosing the guide in a rectangular box where the side
walls may be either electric- or magnetic walls in order to include coupled
structures. The structure consists from four sub-rectangular regions, three of
them are linear with different relative permittivity, and the fourth regions is
a nonlinear medium which the relative permittivity is a function of the
electric field [15,16].
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The structure is discretized by using grid sizes as Ax = Az = 0.025m and
time Af =0.05fs. The CFL coefficient gives by the left hand side of Eq.(24)
is 0.72, ind'icating that the scheme is stable, and in nonlinear media we take
a=25m" /v

Solving Eq0.(10) for the displacement at t = 0 (N = 0) , we get

E;_,l,i + Ef‘j_ml = (2 - 4’”)E"‘j,0 + F(Er-«l,_,'.{) + EH-!J,U + E!,jmt.o + Ei,;+%,0) (26)

The boundary condition at r = 0, in terms of central differences can be
written as:

X
Fig. (2) 2-D slab waveguide Hlustrate of the finite-difference
method treatment.

Eliminating  E£,, , between Eq. (26) and Eq.(27) gives
r
E = A+ A-2r)E, , + S(E;—a,,;,a +E ot E et E:,m,o) (28)

AtN=1,2,..., we follow these equation to evaluate £, ,
E v =E v +2-40E v +7r(E it B "%-E,-‘,M,.N +E, x)(29)
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(a) (b)
Fig. 3 Electric-field profile along the Z-direction at (a) x = 0.1, 0.125 tim

and 0.15, (b) x = 0.35, 0.375 and 0.4 tim (T = 19 {s) obtained by using
Explicit FDTD Method.
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(a) (b)
Fig. 4 Electric-field profile along the x-direction at (a) z = 0.1, 0.125 and
0.15m , (b) z = 0.35, 0.375 and 0.4 um (T = 19 /&) obtained by using
Expltcit FDTD Method.
For analysis and computation of the electric field profile distributions the
FDTD approach described above has been adopted, and the prototype

simulation FORTRAN program has been developed. Representative
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illustrations of numerical and computational results are displayed in Figs.
(3-6). Here nonlinear waveguide structures are extracted from references
[10,11].

! : 1.0 |
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Fig. 5 Electric-field profile Fig. 6 Electric-filed profile
along the z- axis in linear and along z-direction in nonlinear
nonlinear regions at x = 0.225, and linear region respectively at
0.25 and 0.275 pm (1=19) x = 04 umand alpha «= 25,

obtained by the Explicit FDTD. 100 and 500 m?*/V?

Figures (3a) and (3b) show the electric field profile £, along the z-direction
at various value of points along the x-axis. Figures (4a) and (4b) shows the
electric field profile E, along the x-axis at various values of points along the
z-axis. The effects of the nonlinear medium in both Figures can be seen
easily. Both figures (3) and (4) show in clear some kind of an asymmetric
picture and can be shifted a symmetric picture for some values at x and z
dixnensions, Figure (5) illustrates the electric field profile in the interface of
two medig in Figure (2). Figure (6) illustrates the effects of the nonlinearity
on the field profile of E, We note that the simulated field distributions

reacts very sensitivity to the change in the waveguide structure as the
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nonlinear coefficient. The field profile E, has a maximum value in the

nonlinear regions and becomes low in the linear media.

Conclusion
A simple explicit Finite-Difference Time-Domain method is developed
through the Taylor series expansion of the scalar wave equation. A Fortran
program was written to calculate the electric-field profile by using Explicit
FDTD Method in a linear and nonlinear rectangular structure. The stability
condition, consistency and the convergency are demonstrated through a four
layer wave guide structure and we found it is a very efficient and accurate
by éomparison with other results [15]. The described algorithms and
approach also improve the traditional classical procedures and open new

applications on photonic waveguide devices.
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