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Abstract

In [8] Wood has defined muitiplicity functions with non-integer values, to determine
virtyal linear codes of constant weight over the rings Zy. In his paper, he also gave a full

study of the structure of classical linear codes of constant weight over finite chain rings
using pre-homogeneous weight functions.

In this paper we define a multiplicity function 7 on the linear functionals of 2 module
M over the ring R = Z/p)[ul/(#?), p an odd prime, and show that the resulting virtual

linear code has constant weight under this 7, after defining a suitable weight function on R,
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1. Introduction

In {8] Wood has classified the structure of linear codes of constant
weight over Zy. The classification of Wood reproves the classical result

about linear codes of constant Hamming weight over a finite field. This
classical result can be seen in [1].

Wood’s classification also reproves a theorem given by Carlet [2] on
linear codes of constant Lee weight over Z,.

Wood also has described linear codes from the linear functional point of
view of [5], and used the following definitions. which will be used also in

this paper:

Definitions 1.1 [8]

A linear code C over a ring Risa pair (M, n), where M is an R-module,
the module underlying the code, and 7 M — N is a multiplicity function
where M” is the linear dual of M. The length n of the linear code C is n =

Zry(iﬁ). A linear code is non-degenerate if the multiplicity of the zero
Aeh®

functional 7 (0) is 0.

The code C = (M, 1) is a virtual linear code if n has values in Z or @,
that is, if we allow functionals to occur with negative or rational
multiplicities. In case 7 takes values in N, C is classical.

A weight function w on the ring R is a function which assigns real
number weights g, to every » € R. We assume that g, = 0 and that a, > 0 for

r # (. This choice of weight function on R allows us to define a weight

function w,: M — R on any linear code C = (M, »):
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wf,(x) = Zn(ﬂ)aﬂx}, xeM | (1.1
Aeii?

Chain rings are local rings R whose maximal ideal m is principal, say m
= (m). This implies that every ideal in R is principal and of the form m/ =
(m), for some j. The ideals form a chain

R=(m)omo>@mh>..om)>mwh) =0, (1.2)
where m® = 0 but m*! = 0. |

Then R/m = F,, a finite field. The class of #/ is a basis of (m/)/( #/*') as an

R/m-vector space. It follows that

()= pi (D) = (1.3)
(Information and exampies of these rings can be seen in [3, 7, 9]).

When R is 4 chain ring as in (1.2), every module M over R admits a decreasing filtration

MomMomMo...om " M>m™M=0, (1.4)
for some y < 3, as well as a direct sum decomposition
I Nk,
M= ®(R/(m"))" . (1.5)
=1
From (1.3), we see that
B
27k
M= p . (1.6)

If kg = 0, then M is the pullback of a module defined over R/(m™"). To avoid

this, we assume that kg > 1. In that case y = 3 in (1.4).

Note: In [4], Norton and S&ldgean gave a slightly different form of the

decomposition (1.5).
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Example

Let p =3, n =1, r =2 in definition 2.1, we have R = {0, 1, 2, u, 2u 1+u,
24w, 142u, 242u} and w(0) = 0, w(l) = w(2) = 1, w(w) = wu), w(l+u) =
w(2+2u), w(1-+-2u) = w(2+u).

If we fix the value of w(x) to be 3, then the rest of the values of w will be
2 and 4. One can use w(1+2u) = w(2+u) = 2 and w(l+u) = w(2+2u) = 4.

Note: There is an analogue between this weight function w and the Lee

weight function wy, defined on Zy = {x: —ﬂ%‘ls x <M1y as wi(x) = I,
2

(see[6]).

3. A special Case

Now for an arbitrary odd prime p, with n = 1, r = 2, we apply definition
2.1 to the ring R = Z/Ip)[ul/(e) = {0, 1, 2, ..., p-1, u, 14w, 24u, ..., (p—
Drtu, 2u, 1420, 242u, ..., (14 2u, ..., (p-Du, 1+(p~-Du, 2+p-Du, ...,
(—-1)+ (p=~Dul.

The ring R is a chain ring as in (1.2) with = 2. Its maximal idea] is uR =
{0, u, 2u, ..., (p-D)u}. By (1.3) R/(uR)| = p. We assign specific weights for
the elements 0, 1, ..., p~1, u, 2u, ..., (p~1Du as follows:

|xl, xe{0,tL.,t(p-1)/2}

rlp x=t, ref0slot(p-n/y OV

a, = w(x)= {

For the rest of the elements of R we use part (b} of definition 2.1.
Note: In (3.1) we used the notation: Z/(p) = {0, £1, ..., £ (p—1)/2} instead

of {0, 1, ..., p~1}, and it will be used in the proof of the next theorem.

In the next theorem we use (1.5) to decompose any module over the ring -

R = Z/(p)[u)/#?), with B =2 and non-negative integers ki, k.
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Theorem

Let R be the ring Z/(p)[u]/(uz), and suppose that M is an R-module. For
every nonzero A € M", assign the multiplicity

) = 1, reM? —uM’ 32)
n 1= phh? e uM! ' '

| M]

The resulting virtual linear code has constant weight e (p* -1,

Neote: M* — uM" means the set theoretic defference.

Proof:

Consider any nonzero x € M. Since ¢o = 0, there is no harm in including A =
0 in any summation. Write £ = ky + k, where k| and k, are the integers of

(1.5). By definition 1.1 we have

wA) = DL Ay +(1~p"“2>2‘2 A5y

AeM*ur® euM*

= k-2

= 2 G P X g (3.3)
AeM” AcuM

The element x determines a linear map % : M" — R by A > A(x). The image
im¥ of ¥ is a nonzero ideal in R, say im% = (&), i = 0 or 1. It now follows
that im(%lad) = (*). Therefore p“**2 = M| = p}uMj. From (1.3) and
M|

fim X |

(1.6), we see that kerx| = = pk*+2k2"2+i, while [ker( Xl =

luM#I/I(urﬂ)l - pk] '§'2k2~k—2+1'"§"§, — pk2+i~f i

. 4
)} | SR
Also, Za,mp - = . .
rE(zzi) 4w(u ) p(p - 1) i=1

4
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Therefore w,(x) = [ker¥| Z a, — P ker(F Lt N Zar .

re(u’) pe(uit)

2pt=l 4 1 pi-l
(a) For i = 0, we have w,(x) = pk‘+2k2 2 —Q——m-—pk 2 ph ;17-7£U“”““"*“w

4 4
ky+ 2k,
P 2 M,
= —1)= L —1Y.
p (p”-1) 2 (p*-1)
(b) For i = 1, in this case (u"'} = 0 so we get,
2 kﬁ-Zkz
ky+ 24y~ -1 M _
wiy= php Lt = Bty = Ml

In either case we get a constant weight independent of the choice of the

nonzero x.

4. Conclusion

Over the ring Z/(?.k) Wood has determined linear codes of constant
weight (Lee or Euclidean). Also virtual linear codes of constant Lee or

Euclidean weight have been studied by Wood over the ring Z/(N), N
arbitrary.

In this paper, virtual linear codes of constant weight over the ring
Z/(p)[u}/(4*) are determined. Do virtual linear codes of constant weight over
a more general ring Z/(p)[ul/u) or Z/{(p")[1}/(x) exist and have a similar
structure?. Difficulties arise when one tries to define weight and multiplicity
functions.
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2. The Ring Z/(p")[se}/(&)

In this paper we first define a general weight function on the ring R =
ZI[uy W), nz 1, r 2 2, for a general odd prime p, then we determine the
constant weight of a virtual linear code M over the ring R = Z/(p)[u]/(2”) as

a special case, after defining a suitable multiplicity function 77 on the linear
dual M* = Homg(M, R) of M, and under the assumption that M does in fact

exist.

Definition 2.1
We view any linear code over a ring R as a submodule C of the free R-

module R”. Let R be the ring Z/(p")[ul/(u"), where Z/(p")[u] is the ring of

polynomials in u with coefficients from the ring Z/(p") = {x: — (p"-1)/2 < x
< (p™-1)/2}.

We define the function w on R as follows:
(a) for every x such that — (p"~1)/2 < x < (p"~1)/2, w(x) =[],
(b) for the rest of the elements of R, w assigns to each element x and its
additive inverse ~x a real number I, = [ such that the values of /, start
from (p"-1)/2 +1 = (p"+1)/2 (i.e., the values of /, are arranged as: (p"+1)/2,
(p"+1)/2+1, ...) and end with (p"'~1)/2.

Note
(i) Definition 2.1 seems to be arbitrary and very general since one can

assign any value to w in the given range of I, when applied to the elements
of the set Z/(p")u]/(v) ~ Z/(p").
(il) We call w(x) the weight of x.
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