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ABSTRACT
We show that the weak pentagon property (wp)!" is equlvalent to the
gatedness property (G)™ in the class of semi-strong parapolar spaces™.
wp) (Weak Pentagon Property). In a parapolar space T, we say that the
weak pentagon property holds in T, if in each pentagon (xy, X, X3, X3, X4) With
no diagonals, X vt et = @, foralli=0,1,2, 3,4 (indices are taken
mod 5).
®(G) (Gatedness Property). If (x, S) is a point-symplecton pair such that if
[t | =1, then (x, S) is gated at the unique point of (x‘hS) {g}. Thatis
Jfor every point y € S, we have
de(x, ) = drlx, g) + di(g, )
4 parapolar space T is called semi~strong parapolar space if in each
pentagon (X, Xi, X3, X3, X4) With no diagonals {x, x..;) isa symplec:on
(indices are taken mod S)foralli =0, 1,2,3, 4. In other words peniagons
have no special pair.

We also apply these results to certain families of spaces. In particular, we
apply the above result to the class of Lie incidence geometries: Ds(F),
Es «(F), Fu ((F), Eg(F), E1+(F), and Eg y(F) for some field F.
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1 BaSIC DEFINITIONS

A point-line geomerry [ = (P, L) is a pair of sets; P is called the
set of points and L is called the sets of lines, where the members of L
are just subsets of P. If p is a point that belongs to a line /, we say that
plieson! or [ passes through p or p is incident with /.

In point-line geomewy I' = (P, L), we say that two points p, g& P
are collinear if they are incident with a common line, and we write p ~

q.

For any point p in point-line geometry I' = (P, L), define
p={ptu{qePlp~g}.

For any set of points X < P, define X* = ~{p*lp e X}

Rad(X) = XnX". In particular,
Rad(I") = P* = {q € P|p is collinear to ¢ for all p  P}.

I' = (P, L) is called a linear (or singular) space if each pair of
distinct points lies exactly on one line. I is called @ partial linear if
each pair of points lies on at most one line.

A subspace of a point-line geometry I' = (P, L) is a subset X of
points such that if a line / has at least two points of X then [ lies
entirely in X.

A path of length k from xg to x, is a sequence of k + 1 points x, x|,
..., Xz such that x;., is collineartox;, i=1,2, 3, e , k-1,

A geodesic is a shortest path between two points. We define the
distance function _
dr:PxP—>Z by
dr(x, y) = the length of any geodesic from x to y.

A subspace X is called convex if it contains all geodesics between

any two points of X.
The smallest subspace containing a set X is called the subspace

generated by X and denoted by {X).

A subspace X is called connected if for each pair of points there is
a path that connects them and lies entirely in X.
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The singular rank of a space is the maximal number » for which
there exists a chain of distinct subspaces
@ =X,cXcXic.cX
such that X; is singular for each i, with X; # X;, i # /. In this sense, the
empty set has rank equals -1, rank(p) = 0, for any point p, rank(/) = 1,
for any line /.

Let p be a point in P, we define Ay(p) and A, (p) as follows:
Ay (p) = {x € P|x is of distance at most k from p},
Adp) = {x e P|xis of distance exactly k from p }.

A geometric hyperplare is a subspace that meets every line of the
space.

2 SOME FAMILIES OF SPACES

A point-line geometry is called projective plane if it satisfies the
following conditions:

(i) T is a linear space, i.e., every two distinct points x, y € P lie
exactly on one line,

(ii) every two lines intersect in one point,

(ii) there are four points, no three of which are on one line.

A point-line geometry I = (P, L) is called projective space if the
following conditions are satisfied '

(1) every two points lie exactly on one line.

(ii) if 4y, b, are two intersecting lines then ([}, &) is a projective
plane.

A gamma space is a point -line geometry such that for every
point-line pair (p, ) with p not on /, p is collinear to no points of /, one
point of / or all points of [.

It is easy to show thata gamma space' is a space in which pi is a
subspace, for every pointp € P.

In 1959, Veldkamp has published a paper [VE], in which he
axiomatically characterized certain families of geometries (Polar
spaces) related to polarities in a vector spaces. In 1974, Buekenhout
and Shult, in [BS], proved that the axiomatization can be dramatically
simplified. They used the one-or-all axiom.
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A polar space is a point-line geometry [ = (P, L) that satisfies the
following Buekenhout-Shult one-or-all axiom
for each point p not incident with a line /, p is collinear with one

point of / or all points of /.

It is easy to see that a polar space is a space in which prisa
geometric hyperplane, for every pointp € P.
A polar space I = (P, L) is called degenerate if rad(l’") # {J, otherwise
it is called non-degenerate.

3 CLASSICAL EXAMPLES OF FINITE POLAR SPACES

Let V be a vector space over a finite field F = GF(g), g is a prime
power.

1. Symplectic Geometry W ,(q) is the point-line geometry (P, L), where
P is the set of all one dimensional subspaces (x) of V, and L is the set
of all two dimensional subspaces (x, y) for which B(x, ¥) =0, fora
symplectic bilinear form B. In this case » is even and the polar space
is of rank n/2. -

2. Hyperbolic Geometry Q",(g) is the point-line geometry (P, L),
where P is the set of all one dimensional subspaces (x) of V for which
B(x, x)=0, and L is the set of all two dimensional subspaces (x, y} for
which B(x, ) = 0, for a hyperbolic bilinear form B. In this case n is
even and the polar space is of rank n/2.

3. Elliptic Geometry C¥'(q) is the point-line geometry (P, L), where P
is the set of all one dimensional subspaces (x) of V for which B(x, x) =
0, and L is the set of all two dimensional subspaces {x, y) for which
B(x, y) = 0, for a elliptic bilinear form B. In this case n is even, the -
polar space is of rank (n/2) - 1.

4. Orthogonal Geometry S,{(g) is the point-line geometry (P, L),
where P is the set of all one dimensional subspaces {x) of V for which
B(x, x)=0, and L is the set of all two dimensional subspaces (x, y} for
which B(x, y) =0, for an orthogonal bilinear form B. In this case n is
odd, the polar space is of rank (n-1)/2.

5. Hermitian Geometry H*,,(q‘q) is the point-line geometry (P, L),
where P is the set of all one dimensional subspaces (x) of V for which
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B(x, x)=0, and L is the set of all two dimensional subspaces (x, y) for
which B(x, y) = 0, for a Hermitian bilinear form B. In this case n is
even, the polar space is of rank n/Z.

6. Hermitian Geometry Ha(g) is the point-line geometry (P, L),
where P is the set of all one dimensional subspaces {x) of V for which
B(x, x)=0, and L is the set of all two dimensional subspaces (x, y) for
which B(x, y) = 0, for a Hermitian bilinear form B. In this case n is
odd, the polar space is of rank (n-1)/2.

Polar spaces of rank at least 3 have been classified [BS], [B], [JP],
[BSP]. It turned out that those spaces in which each line contains at
least 3 points and rank at least 4 are classical polar spaces.

A point-line geometry is called a parapo!ar space if it satisfies
the following conditions.

(i) I is a connected gamma space with no lines of cardinality two,

(i) for every line; I* is not a singular space,

(iii) for every pair of pointsx,y of distance 2, x Lyt is either a
point, or non-degenerate polar space of rank at least 2.

A parapolar space is called strong parapolar space if for every pair of
points x, y of distance 2, x*ry* is non-degenerate polar space of rank
at least 2.

COOPERSTEIN'S THEORY. In [Coo], Cooperstein has shown that
if (P, L) is a parapolar space then for every pair of points p, g of
distance 2, the convex closure (p. ¢) is a non-degenerate convex polar
space whose rank is one more than the rank of prngt. Moreover he
has shown that all maximal singular subspaces of ( p, ¢) are projective
spaces. Such a convex polar space (p, ¢) is called a symplecton.
Convexity of such polar spaces forces the following very important

property:

for any two distinct symplecta S, Sz and a point p, S and
S;\S» are a projective subspaces of Si(or Sz).
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4 LIE INCIDENCE GEOMETRIES

A point-line geometry T = (P, L) whose points P are the cosets of
a maximal parabolic subgroup of Lie type, and whose lines L are the
cosets of the parabolic subgroup P’ corresponding to the collection of

all nodes in the dynkin diagram adjacent to the unique node
corresponding to P.

Next we will give some classical examples of finite spaces

1. Projective Spaces

Ani(F). b '

2. Half-spin Geometry

P
L

Ds 5(F):

3. Metasymplectic spaces
s S

Fa.(F): p L
4. Exceptional Geometries

EG, y (F) & 0 Q ’

P L
L
Es 4(F): ¢ ¢ ¢ )
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& f--= &— 8
E73(F): L P

5 PROPERTIES OF PARAPOLAR SPACES

In a parapolar space (P, L), if xo, x1, X2, X3, x4, are five points in P,
we say that (xg, X1, X2, X3, Xs) i3 2 pentagon if x;is collinear with
xi1. We say that (xo, X1, X2, X3, X4) is a pentagon with no diagonals, if
(xo, X1, X3, X3, X4) is a pentagon such thatx; is neither collinear with
X2 00T Xu3 =0, 1,2, 3, 4 (indices are taken mod 5).

(wp) (Weak Pentagon Property). In a parapolar spaceT’, we say
that the weak pentagon property holds inT, if in each pentagon (xo,
X1, X1, X3, X1) with no diagonals; .wc,Lr\Jc;+z“i“f‘\x,+3i =& foralli=0,1,
2, 3. 4. (indices are taken mod 3).

(P) (Pentagon Property). If (xo. X1, X2, X3, X3) is a pentagon with no
diagonals, then x; is collinear ro one point on the opposite line x,.2%,+ 3
withi=0, 1,2, 3, 4 (indices are taken mod 5).

DEFINITION. 4 parapolar space T is called semi-strong parapolar
space if in each pentagon (xo, Xi, X2, X3, Xs) with no diagonals (x,, X;+2)
is a symplecton (indices are takenmod 3) for alli=0,1, 2,3,4. In
other words pentagons have no special points.

This class was first introduced in [At2]. In a parapolar space (wp)
implies that the space is semi-strong parapolar space. Strong parapolar
space is semi-strong parapolar space. So semi-strong parapolar space
is a class of parapolar spaces in “between” parapolar spaces and
strong parapolar spaces.

(Gated) A subset S in a point-line geometry U = (P, L) is said to be
gated with respect to a point X notinS, if there exist a point g (the
gate with respect to xj such that for all y € S, we have
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dr(x, y) = dr(x, g) * ds(g, »)

(G) (Gatedness Property). In a poini-line geomerry I' = (P, L), If (x,
S) is a point-symplecton pair such thar ifl x'nS| =1 then (x,S)is
gated at the unigue point (x*n\S) = {g}. That is for every point y € S,
we have:

dr(x, y) = dr{x, g) + ds(g, »)

In a parapolar space I' = (P, L) if (xq, xy, X2, x3, X4) i$ a pentagon
with no diagonals, and if x; is collinear to a point on the opposite side
(say z) then we have |x ‘"] > 2. By Cooperstein Theory, (xy, x. ) is
a symplecton (say S). Now § contains the two points z, x3, and since S
is a subspace it must contain the whole line x,x3, thereforex; € S.
Since § is aconvex subspace then x; € S. Hence the whole pentagon
(xo, X1, X2, X3, X4) lies in a symplecton.

On the other hand if a pentagon with no diagonals (xo, x;, x3, X3, X4)
lies in a symplecton S then because the space S is a polar space; xg is
collinear to one point or all points of line xax3. However xq can not be
collinear to all points of x;x; since the pentagon has no diagonals.
Thus x is collinear to one point on the other side. This argument will
give us the following:

In a parapolar space, (p) is equivalent to saying that pentagons with
no diagonals lie in a symplecton.

6 PRESENT RESULTS

EL-Atrash has shown, in [Atl], that in the class of strong parapolar
space the property of havmg the intersection of two symplecta is never
a point for all distinct pairs of symplecta is a sufficient condition for
the gatedness property (G). Here we prove the same result in the
wider class of semi-strong parapolar space. In proving this result, we
follow the same way which is used in [Atl].

PROPOSITION 6.1. Let I =(P, L) be a semi-strong parapolar space.
Suppose that rank (5i11\Sy) = 0 for any two symplecta Sy, S; then (G)
holds inT.

- PROOF: Let (x,S) be a non-incident point-symplecton pair such that
x'nS = {p}, asingle point. We want to prove that dr{x, y} = 1+ ds(p,
y) foreveryy € 8. Since Sis a polar space, we have two cases, either

e
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y ~ p ie., ds(p, ¥) = 1 ords(p,y) =2. For the first case we want to
show that de(x, ») = 2. Since x'nS is a unique point {p} by
hypotheses, therefore dr(x, ») # 1, hence dr{x, y)=2. Now for the
second case. Letg be a point in § such that ds(p, ) =2. We need to
show dp{x, g) = 3. Since xS = {p} is a single point, xis not
collinear with g therefore we may, by way of contradiction, assume
that de{x, ¢)=2. Since ds(p, ) =2; p is not collinear with g. And x is
not collinear with g by hypotheses. Choose m € x'mg™. m # p, since ¢
is not collinear to p, also m ¢ S, since otherwise xtA\S would be more
than one point. In factm g P~ by convexity of S. Because pirgtisa
polar space of rank at least 2. So, it is not singular space mie(ptogh).
So letw € prAgh\ m'. So we have a pentagon  (x, p, w, g, m) with no
diagonals.

[Figl]

Since I’ is a semi-strong, parapolar space then every pair of points
of distance 2 in this pentagon is a polar pair, so (x, ) is a convex polar
space (say S). SNS' #@. Since g € SNS', it follows by hypotheses
that $~S’ must contain a line, sav /; x, [ lie in the polar space S, then
x*~I is a point z, say. z= p since p is not collinearto pbut z~g.
This is a contradiction to the assumption that x*"S = {p}. Thus d(x, 9)
=3 as required whence (G) holds. &
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The next two results can be found in [Atl] however, again, these
are proved for the wider class of semi-strong parapolar space rather
than class of strong parapolat” space

THEOREM 6.2. Ler I = (P, L) be a semi-strong parapolar space. Then
(G) is equivalent to (wp).

PrROOF. (G) => (wp). If we have a pentagon with no diagonals and if
it lies in a symplecton, then every vertex of the pentagon is collinear
to a point on the opposite side and consequently (wp) hold. So, we
may assume that (@, b, ¢, d, €) is a pentagon not in a symplecton.
Then (a, ¢) is a symplecton because I” is a semi-strong parapolar space
S contains b but not d and e since otherwise the whole pentagon would

[Fig2]

lie in a symplecton against our assumption.

If |#*~S |= 1 thenby (G), (d,S)is a gated pair with gate c. But
dr(a, d) < 2 as can be seen in the figure. Now by (G) we have 2 2
dr(d, a) = 1+ dg(c, a) = 14+2=3 which is a contradiction. Therefore
d'nS must contain a line / (say) on ¢ as in the above figure. Since S is
a polar space there is a point z € a'nl ¢ a*me*nd. Since (a, ¢, d) is
an arbitrary non-consecutive triple of vertices from the pentagon
whence {wp) holds

(wp) => (G). Let (x, S) be a point-symplecton pair with x'nS =
{g}, it follows that
£'NS 2 A NS

If (x, §) is not gated, then there is a point p € S-g* of distance at
most two from x. But as x'n\S is a clique lying in x*, x cannot be
collinear with p. Therefor dr(x, p) = 2. So, there exists v € x rp™.



13 GATEDNESS PROPERTY

Now v e(x*p*)-g*, so v is not in S and one can choose u € p"g*
outside the clique v'NS, since p'ng* is a polar space of rank at least
2. So(p,u, g, x, V) is a pentagon with no diagonals. By (wp), there is
a point z see the figure below such that

z € prrgtrxt.

Since § = {p, g) Is convex,
ze x'n\S={g}.

[Fig3]

This is impossible as z € p~and g  p~. Thus (x, S) is gated with gate
g. This completes the proof. &

7 APPLICATIONS

A whole class of Lie incidence geometries is the subject of one
and two theorems of Cohen-Cooperstein. This class satisfies the
property that the rank of x'nS = -1, | or maximum rank in the
following Theorem. -

TaeOREM 7.1. [COC] Let I"be a parapolar space and finite singular
rank s. Then [ satisfies:
(a) x'N\S either empty, a line or a maximal singular subspace of
S, for every point-symplecton pair with x not in S,
(b) x*y* has rank k.
Iff there is a fleld F and one of the following holds:
(i) k = s, I is a polar space of rank k + 1.
(i k=3,s=4and [ = Ds5(F), Es4(F) or F41(F).
(iidk=4,5=5.6and [ = Eg(F), E14(F).
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(WM k=6,5s=Tandl =Eg,(F).

Here we apply the above Theorem to show that all these
geometries satisfy the weak pentagon property.

COROLLARY 7.2. Let T = (P, L) be a parapolar space with x*nS
either empry, a line or a maximal singular subspace of S. Then (wp)

holds in T

PROOF. Since x-S is never a point then (G) holds inT. Therefore, by
Theorem 6.2 (wp) holds in I". 58

COROLLARY 7.3. ‘(wp) holds in the following geometries: polar
spaces, D5 s(F), Ee4(F), F41(F), E¢.1(F), E7.#(F), and Eg 1(F).

(Az) DEFINITION. In a parapolar space T = (P, L), we say that (A7)
holds if for any point p € P, &y*(p) is a subspace of T

PROPOSITION 7.4, Let I be a semi-strong parapolar space, then (wp)
implies (A7)

PrOOF. (wp) => (A;). Suppose that a line / meets Agu(p) at two
distinct point b, ¢ clearly if p*i = & then A, (p) contains /. Also if p,

b and ¢ lie in a common symplecton then / < A, (p).

So we may assume that no symplecton contains {p, b, ¢} in
particular /~p* = &. Choose u € b*ryp* if u is collinear with c,
clearly I < A,"(p), so assume & c*, similarly choose v € ¢*rp*, and
if v is collinear with b, then / < A, (p), so'assume v g b™.

If v ~ u, then since {pu, pv) is a projective plane having thick lines
p is collinear with I' = »v, and since v'bt 2 2. Now since [is a
parapolar space, (v, b)is a convex polar space by Cooperstein theory.
Therefore every point ¢ on the line bc, r'~!’is apoint z. Thenz € r*. p,
z are both in the projective plane (pv, vi), then z ~ p and thus d(p, 1) <
2. It follows that every point ¢ on the line be has at most distance 2
from p. Therefor I c A, (p).

Finally, if u is not collinear with v, then (p, v, ¢, b, u) 1s a
pentagon with no diagonal, but by (wp), so there exist a point w such
that
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(Fig4]

This implies that/ ¢ wh e A.“(p). This shows that in both cases /
< A (p). Hence A, (p) is a subspace. B

COROLLARY 7.5 (&) holds in the following georﬁéirie;: polar spaces,
D5 5(F), Eoa(F), F41(F), E61(F), E72(F), and Eq ((F).
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