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ABSTRACT
In this thesis we prove or disprove that the ‘pentagon property””
holds in an important class of geometries’ that are the subject of
two theorems of Cohen and Cooperstein, by proving that the
pentagon property is necessary to some other properties in different
geometries.

We also apply these results to certain families of spaces. In
particular, we apply the above result to the class of Lie incidence

geometries: Dgg(F), Asa(D), Fq(F), E7(F) for some field F and
division ring D.
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(*) Pentagon property:

If I" =(P, L) is a point line geometry we say that pentagon property
(P) holds in I if (xy, x;, x5, X3, X4) 1s a pentagon with no diagonals
then x; is collinear to one point on the opposite line x;. xx;.;, with
i=0,1, 2, 3,4 (indices are taken mod. 5).

In 1982, Arjeh Cohen wrote a fundamental and important
paper [Co], in which he characterized the metasymplectic
spaces F,;(K) by only involving points and lines that can be
considered " local characterization ", since those points and
lines are within distance two of each other. He used an
elementary property called "The pentagon property".

In 1989, Ernest Shult wrote a Jong paper [Shl], in which he
proved that the results, in [Co], can be proved by using a local
version of the pentagon property.

In 1996, Mohammed El-Atrash, the co-author was studying
the m-systems in parapolar spaces [Atl], in which he needed
the pentagon property to hold in those geometries he used, so
he studied the pentagon property in various spaces [At2],
[At3]. This paper is considered as a continuation of [At2],
[At3].

1.GEOMETRIC PRELIMINARIES

1.1 BASIC DEFINITIONS
A point-line geometry I’ = (P, L) is a pair of sets; P is called
~ the set of points and L is called the sets of lines, where the
members of L are just subsets of P. If p is a point that belongs
to a line /, we say that p lies on/ or / passes through p or p is
incident with /. A line is called #hin if it contains exactly two
points, otherwise it is called #hick.
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In point-line geometry I' = (P, L), we say that two points
p, g€ P are collinear if they are incident with a common line,
and we write p ~ g.

For any point p in point-line geometry I' = (P, L), define

p={p}ufgeP|p~gq}.
For any set of points X P, define X' = ~{p* \p e X}.

Rad(X) =XnX*. In particular,
Rad(T') =P* = {q € P| p is collinear to ¢ for all p e P}.

I' = (P, L) is called a linear (or singular) space if each pair of
distinct points lies exactly on one line. I'is called a partial
linear if each pair of points lies on at most one line.

A subspace of a point-line geometry I' = (P, L) is a subset X of
points such that if a line /has at least two points of X then /
lies entirely in X,

A path of length k from x, to x; is a sequence of k£ + 1 points
X0, X1, ..., X such that x;.; is collinear to x,, i =1, 2, 3, ..., k.

A geodesic is a shortest path between two points. We define
the distance function
dr PxP - Z, by
dr(x, y) = the length of any geodesic from x to y.

A subspace X is called convex if it contains all geodesics
between any two points of X.

The smallest subspace containing a set X is called the
subspace generated by X and denoted by (X).

A subspace X is called connected if for each pair of points
there is a path that connects them and lies entirely in X.
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The singular rank or just the rank of a space is the maximal
number » for which there exists a chain of distinct subspaces

@zx_]CXQCX;C“.CXn

such that X; is singular for each i, with X;# X;, i #/. In this
sense, the empty set has rank equals -1, rank({p}) = 0, for any

point p, rank(/) = 1, for any line /,
Let p be a point in P, we define Ay(p) and A (p) as follows:
Ak*(p) = {x € P | x is of distance at most £ from p},

Adp) = {x € P|x is of distance exactly k£ from p }.

A geometric hyperplane is a subspace that meets every line of
the space.

Let (P, L), (P’ L’y be two geometries. 4 morphism ¢: (P,L) - @, L")
is a mapping between the indicated sets that preserves

incidence and type, i.e., for any pair of pointsx, y €P, we

have

¢(x), ¢(y) € P’ and if:

x~y=>0{x)~ ¢¥)
Alsoif/isaline in L then (/) € L' and if x € / then

o(x) € o))

1.2 SoME FAMILIES OF SPACES

A point-line geometry is called projective plane if it satisfies
the following conditions:
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() ' is a linear space, i.e., every two distinct points x, y € P

lie exactly on one line,
(-) every two lines intersect in one point,

(z) there are four points, no three of which are on one line.

A point-line geometry I'= (P, L) is called projective space if
the following conditions are satisfied
() every two points lie exactly on one line.

(<) if 1y, I, are two intersecting lines then {(/,,,)isa
projective plane.

A gamma space is a point -line geometry such that for every
point-line pair (p, /) with p not on /, p is collinear to no points
of /, one point of / or all points of /.

It is easy to see that a gamma space is a space in which p* is a
subspace, for every point p € P.

In 1959, Veldkamp has published a paper [Ve], in which he
axiomatically characterized certain families of geometries
(Polar spaces) related to polarities in a vector spaces. In 1974,
Buekenhout and Shult, in [BS], proved that the axiomatization
can be dramatically simplified. They used the one-or-all
axiom.

A polar space is a point-line geometry I' = (P, L) that satisfies
the following Buekenhout-Shult one-or-all axiom

Jor each point p not incident with a line I, p is collinear
with one point of | or all points of |

It is easy to see thata polar space is a space in which p* is a
geometric hyperplane, for every point p e P.

A polar space I' = (P, L) is called degenerate if rad(I") # &,
otherwise it is called non-degenerate.
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The polar rank or just the rank of a polar space is the maximal

number r for which there exists a chain of distinct subspaces
radlNc X, cX;c...c X,

such that X, is singular for each i, with X; # X, , i # j.

1.3 CLASSICAL EXAMPLES OF FINITE POLAR SPACES

Let V be a vector space over afinite field F=GF(g), gisa
prime power.

1. Symplectic Geometry W ,(q) is the point-line geometry
(P, 1.), where P is the set of all one dimensional subspaces (x)
of V, and L is the set of all two dimensional subspaces (x, )
for which B(x, y) =0, for a symplectic bilinear form B. In this
case n is even, the polar space is of rank n/2.

2.Hyperbolic Geometry Q) (q) is the point-line geometry

(P, L), where P is the set of all one dimensional subspaces (x)
of V for which B(x, x) = 0, and L is the set of all two
dimensional subspaces (x, y) for which B(x, y) = 0, for a
hyperbolic bilinear form B. In this case »is even, the polar
space is of rank n/2.

3. Elliptic Geometry () ,(q) is the point-line geometry (P,
L), where P is the set of all one dimensional subspaces {(x)
of V for which B(x, x) = 0, and L is the set of all two
dimensional subspaces {x, ») for which B(x, y)=0, fora
elliptic bilinear form B. In this case » is even, the polar
space is of rank (n/2) - 1.

4. Orthogonal Geometry Q,(q) is the point-line geometry
(P, L), where P is the set of all one dimensional subspaces {x)
of V for which B(x, x}) = 0, and L is the set of all two
dimensional subspaces (x, y) for which B(x, y) = 0, for an
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orthogonal bilinear form B. In this case » is odd, the polar
space is of rank
(n-1)/2.

5.Hermitian Geometry H',(q°) is the point-line geometry

(P, L), where P is the set of all one dimensional subspaces (x)
of V for which B(x, x) = 0, and L is the set of all two
dimensional subspaces (x, y) for which B{x, y) = 0, for a
Hermitian bilinear form B. In this case » is even, the polar
space is of rank rn/2.

6.Hermitian Geometry H,(¢°) is the point-line geometry

(P, L), where P is the set of all one dimensional subspaces (x)
of V for which B(x, x}) = 0, and L is the set of all two
dimensional subspaces {x, y) for which B(x, y) = 0, for a
Hermitian bilinear form B. In this case n is odd, the polar

space 1s of rank
(n-1)/2.

Polar spaces of rank at least 3 have been classified in [BS],
[B], [Jp], [BSP]. It turned out that those spaces in which lines
contains at least 3 points and rank at least 4 are classical polar
spaces.

A point-line geometry is called a parapolar space if it satisfies

the following conditions.

() I' is a connected gamma space with no lines of cardinality
two,

(<) for every line; I is not a singular space,

(z) for every pair of points x, y of distance 2, x"y" is

— either a point, or non-degenerate polar space of rank at

least 2.
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A parapolar space is called strong parapolar space if for every
pair of points x, y of distance 2, x""y" is non-degenerate polar
space of rank at least 2.

The pair of points (x, ) is called a polar pair if x*~y* is non-
degenerate polar space of rank at least 2. And the pair of points
(x, y) is called a special pair if x"~y" is a single point.

1.4 COOPERSTEIN'S THEORY

In [Coo], Cooperstein has shown that if (P, L) is a parapolar
space, then for every pair of points p, g of distance 2, the
convex closure {p, ¢g)isa non-degenerate convex polar space
whose rank is one more than the rank of p g™ and is
independent of the choice of p, g. Moreover he has shown that
all maximal singular subspaces of (p, ¢) are projective spaces.
Such a convex polar space (p, ¢q) is called a symplecton.
Convexity of such polar spaces forces the following very
important property:

for any two distinct symplecta Sy, Sy and a point p; p~n\S, and
SinS, are a projective subspaces of Si(or Sy).

2. INTRODUCTION TO THE MAIN PROBLEM

2.1 LIE INCIDENCE GEOMETRIES
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A point-line geometry I' = (P, L) whose points P are the cosets
of a maximal parabolic subgroup of Lie type, and whose lines
L are the cosets of the parabolic subgroup P’ corresponding to
the collection of all nodes in the dynkin diagram adjacent to
the unique node corresponding to P, is called Lie incidence
geometry. In this paper we mark the node of the Dynkin
diagram that corresponds to the set of points by P, and we
mark the node of the Dynkine diagram that corresponds to the
set of lines by L. These geometries constitute a very important
class of point-line geometries that have been under intensive
study to investigate their properties and to characterize them
using points and lines. In this study, we mainly apply almost
all of our results to them.,

Next we will give some classical examples of finite spaces

L
& g @ % & &
AnlF) P
I Grassmann Spaces
B, (F) o @

2 Half-spin Geometry

3 Metasymplectic spaces

F4 1(F) Y
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4 Exceptional Geometries
E 6. I(F) @ & & L]
‘ P L
¢

Ea(F) I —

2.2 PROPERTIES OF PARAPOLAR SPACES

In a parapolar space I = (P, L), if xq, x4, X2, x3, x4_are five point
in P, we say that (xp, x;, x3, X3, X4) is a pentagon if x;is
collinear with x;. In addition, we say that (xg, xi, X2, X3, X4) is
a pentagon with no diagonals, if (xo, x1, X2, X3, x¢) is a
pentagon such that x; is neither collinear with x;., nor collinear
withx.; =0, 1, 2,3, 4 (indices are taken mod 5).

DEFINITION (2.2.1) (Pentagon Property) (P). If (xo, %1, X2, x3, X1)
is a pentagon with no diagonals then x; is collinear to one
point on the opposite line x..ox.. 3 withi =10, 1, 2, 3, 4 (indices
are taken mod 5). "

DEFINITION (2.2.2) 4 parapolar space I is called semi-strong
parapolar space if in each pentagon (xp, x;, xa, X3, X4) With no
diagonals (x, xu.;) is a symplecton (indices are taken mod 3)
Jor all i = 0, 1, 2, 3, 4. In other words pentagons have no
special pairs.
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This class was first introduced in [At3]. Strong parapolar space
1s semi-strong parapolar space. So semi-strong parapolar space
is a class of parapolar spaces that lies in between parapolar
spaces and strong parapolar spaces.

One sufficient condition for a parapolar space to be semi-
strong parapolar space can be in the following result (see
[At4]).

THEOREM (2.2.1) If U is a parapolar space of vank r > 3 with
'S is never a point for all point-symplecton pair (x, S), x & S,
then pentagons with no diagonals have no special pairs.

In a parapolar space I" = (P, L) if (x¢, x|, X2, x3, X4) is a
pentagon with no diagonals, and if x; is collinear to a point on
the opposite side x,x; (say z)then we have [xglr\x3l| > 2. By
Cooperstein Theory, {x;, x3 ) isa symplecton (say S). Now S
contains the two points z,x3, and since S is a subspace it must
contain the whole line x.x;, therefore x, € S. Since § isa
convex subspace then x; € S. Hence the whole pentagon

(X0, X1, X2, X3, X4) lies in a symplecton.

On the other hand if a pentagon with no diagonals

(x0, X1, X2, X3, X4) lies in a symplecton S then because the space
S 1s a polar space; x;is collinear to one point or all points of
line x,x;. However x, can not be collinear to all points of x,x;
since the pentagon has no diagonals. Thus x; is collinear to one
point on the other side. This argument will give us the
following:

In a parapolar space, (p) is equivalent to saying that pentagons
with no diagonals lie in a symplecton.

Some of the basic properties of polar spaces that are needed in
this paper can be found in [Jp], [At3] and [Sh2]. Here we will
state some of these results (without proof ).

LEMMA (2.2.1) [Jp]. Let I = (P, L) be a polar space of rank
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= 2. Then the following hold.

() for any point p € P, | €L,p €l thereis apointq € P
such that g*l = {p}.

(«) if X is asubspace of I and if p € P, then p*rX is either
X or a hyperplane of X.

LEMMA (2.2.2) [Sh2} Non-degenerate polar space with thick
lines is not the union of two singular subspaces.

LEMMA (2.2.3) [At3] Let I be a parapolar space. Let A, B be
two distinct symplecta. If x, a, b are three points with a € A\B,
b eB\d xe AN B,a~b, xis neither collinear to a nor to b.
Then

rank (a"\B) = rank (ANB) = rank (b*A4)

Here, we present the results which are obtained by El-Atrash
and Cohen — Cooperstein ( without proof)

Some similar results about (p)can be found in [At2] like the
following result that finds equivalent condition for (p)

THEOREM [At2] Let T be a parapolar space. Suppose that
xS is empty or a line for all point-symplecton pair (x, S),
x&S. Then the pentagon property holds if and only if S$iM\S, is
never a line for every pair of distinct symplecta S, S».

One of the geometries that satisfy these hypotheses is the
metasymplectic spaces F; (K) for some field K.

Next are some results in various spaces. The first is a
generalization of the previous result, the second- relates (p)
with its counterpart "The pentagon property holds locally".
The third is a result that relates both (p) and (p) locally to the
intersection of symplecta. All three results can be found in
[At3].
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THEOREM [At3]Let "= (P, L) be a parapolar space. Suppose
that for some integer k> 1; rank (x"'\S) = -1 or k for every

x € P and symplecton S with x ¢ S. Then (p) holds in T iff
rank (AB) # k; for every pair of distinct symplecta A, B.

THEOREM [At3] Let I' = (P, L) be a parapolar space in which
each symplecton has rank at least 4. Suppose that for some
integer k = 1; rank (x'nS) = -1 or k Jor every x € P and
symplecton S with x & S. Then (p) holds in T iff (p) holds
locally in T".

THEOREM [At3] LetI'= (P, L) be a parapolar space in which
each symplecton has rank at least 4. Suppose that for some
integer k > 1; rank (x'n\S) = -1 or k Jor every x € P and
symplecton S with x & S. Then the following are equivalent:

(1) (p)holdsinT.

(i1) (p) holds locally inT.

(iii) rank (ANB) # k; for every pair of distinct symplecta 4, B.

THEOREM [COC] Let k = 2 and let (P, L) be a parapolar
space with no thin lines, whose maximal singular subspaces
have finite rank s, and whose symplecta have rank k + 1. Then
(P, L) satisfies (x'N\S) is either empty, a point, or a maximal
singular subspace of S if and only if one of the following holds:

(1)  k=sand (P, L) is a non—degenerate polar space of rank
k +1 with thick lines,

(ia) k = 2,523, and for some natural number n between 4
and  2s-1, and a division ring D, (P, L) = A, AD), d=n-s+ 1;

(iib) k= 2,5 2 5 and (P, L) = Ay, (D) <c> for some (infinite)
division ring D, where o is an automorphism of Aney s
induced by a polarity of the underlying projective space
PG(2s-1, D) of Witt index at most s-5 ;
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(i) k=3, s 2 4 and for some field F, (P, L) contains families X
, 1T of convex subspaces of (P, L) isomorphic to Dy 1(F) and
Ds s(F) respectively such that T is the system of symplecta
of the parapolar space, and if (x,S) e Px Zwithx ¢ S,
xS is a maximal singular subspace of S then {x}US lie
ina unique member of 1. The incidence system of lines
and planes lying on any point x is A, »(F) .

(iv) k=4,s=5and (P, L) = Eq ((F) for some field F.
(v) k=5,5=06and (P, L)=E; (F) for some fieldF.

THEOREM [COC]. Let k = 3 and suppose (P,L) is a gain a
parapolar space with no thin lines, and finite singular rank s
and whose symplecta have rank k + 1. Then (P, L) satisfies

(x"N\S) is either empty, a line, or a maximal singular subspace
of S if and only if there exists a field F such that one of the
Jfollowing holds:

() k=s,(P,L)is anon-degenerate polar space of rank k + 1
with thick lines.

(<) k=3,s=4and (P, L) =D;5(F) , Ec4(F) or Fy (F).
(0) k=4,5=5,6and (P, L) = Eg,(F) or E;+(F).
() k=6,5=7 and (P, L)=Eg,(F).

3. MAIN RESULTS
This section is the care of the paper. For our study we need the
following definition

DEFINITION. (Uniformazing Principle) For integer k£ > 0, we
say that (Ug) holds in a parapolar space if for any two distinct
symplecta R, S with rank(RNS) = &, we have for every a € R,
with RS ¢ a* implies that a*nS & RS,
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The following is a necessary condition for (p) in
parapolar spaces that satisfies (Uy) for &£ =2.

LEmMMA (3.1) Let ' be aparapolar space, satisfying (Us,). If
(P} holds then rank ($inSy) < 2 for each distinct symplecta S;, Sa

ProOF. Let I' be a parapolar space as in the
hypothesis. Suppose that (P) holds in I". Assume that
rank {(S;"S;) = 2, for a pair of distinct symplecta S},
S>. Since 8 is a polar space there is a point

o

N

Fig. 1

xoe&\(SlﬁSg)i. Let x3 € §i"\8; with xg is not collinear
to x3. By (U,) there is a point x; & (xo*nS\S).

Since xp is not collinear to x3, we can choose x4
exo nx;t, in fact we can choose x; not collinear
to x; since x 'S, is a singular subspace of §|,
however, xg Mx;~ is a polar space of rank at
least 2, so it is not a singular subspace of §.
Choose x, € (x;7mnx;N\S,, again we can choose
x, not collinear to x4, since x;°MS; must be
singular subspace of §,, but xotrxsT s a polar
space of rank at least 2. x; 1s not collinear to xg,
since x-S s singular subspace, but X not
collinear to x3. Similarly x; is not collinear to
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xs. Thus (xp, x1, X2, x3, X4) is pentagon with no
diagonals. Then it follows by (p) that the
pentagon (xg, X, X2, X3, X4) lies in a symplecton,
say, S. Then by Cooperstein Theory §; = §=25,.
This contradicts our assumption that S, = 355.
Thus rank(S;nS;) < 2, for each pair of distinct
symplecta Sy, S;. This completes the proof.(see
Fig 1).

The next is in fact a generalization of the previous paper
in [At5]. It is one of our main results since it involves
those Lie incidence geometries that comprise the
geometries of the first of two fundamental theorems of
Cohen and Cooperstein.

THEOREM (3.1) Let T = (P, L) be a parapolar space, with the
property that (x"N\S) is either empty, a point, or a maximal
singular subspace of S, for each point—symplecton pair (x, S),
x ¢ S.If(P)holds in T then rank(S,1\S,) < 2, for each distinct
symplecta Sy, 5.

PROOF: Assume that rank(S,nS;) = 2, for some two

Si Sz

Fig. 2
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distinct symplecta S, S;. It follows that thereis a
plane say nm < (S11S;). Since S| is polar space we can
find a point, say, x; € S; such that x;°~7 is a line /
(= ab).

Let xy € m\/. Choose x4 € xo"rx3—. Since / < x37"S, ,
SO x#mSz is not empty and not a point, it follows
from the hypothesis that xg”LmSz must contain a
maximal singular subspace of S, of rank 4= 2.1t
follows that there is a point, say, x, € (xg,imSz)\Z. X5
not collinear to x, since x, S, must be a singular
subspace of §;, however xy not collinear to x;. Then
we can choose x;e8xetmx,t. In fact we can
choose x; not collinear to x; since x; S, must be
singular subspace of S,, however xy*x,t is not
singular subspace of S,. Similarly x; not collinear to
x; and x; is not collinear to x4. It follows that

(x0, X1, X2, X3, X4) 18 a pentagon with no diagonals.
Then by (P) the pentagon (xq, x1, x2, X3, x4) must lie
in a symplecton, say, S, however this implies that §,
= § = §, by Cooperstein Theory. It contradicts our
assumption that §,, S, are distinct. This completes
the proof.(see Fig 2).

LeMMA (3.2) [At3] Let I = (P, L) be a parapolar space that is
not a polar space in which there is some xe P and some
symplecton S, with rank(x'n\S)) = k for some integer k2 2.
Then there is a symplecton S, such that rank(S1MS,) = k.

PROOF. Let &), x be as in the hypothesis, i.e.,
rank(xJ‘r'\S]) = k, £k 2 2. Choose y e S, such that
yroxtnS, is a hyperplane of x'nS;. Set X = y*nxtnS).
Since k = 2, 5§, = {x, y) is a symplecton. We will
show that rank (§,nS;) = k. First we see that {y, X>
1s a singular subspace of rank k contained in S;N.S;.
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If z € §;nS, then z € X'yt thatis, z € (X, y). It
follows that S|nS, < (X, y). Hence S,nS; = (X, y).

LEMMA (3.3) Let U be a parapolar space in which (x*MS) is
never a point for each point—symplecton pair (x, S), x & S. if
(p) holds then (S1"\S;) is never a line for each pair of distinct
symplecta Sy, Ss.

PROOF. Suppose that (p) holds in I'. We want to show
that rank(S;nS;) # 1, for each pair of distinct
symplecta S, S,. Assume §;NS; is a line /, for some
given two distinct symplecta Sy, S; in I'. Since S is a
polar space we can find a point g € S$;\S; such that
g Nl is a point b. Let a € [ with a # b_Since atngt is
a polar space of rank at least 2, we can choose

n e ang with n # b. Thus g-NS, is not empty. It
follows from hypothesis that there is a line, say, /'
such that I' ¢ ¢*nS, Let y € I', y # b. y is not
collinear to a since y™NS; is singular space, however
a not collinear to g. So we can choose ¢ € (a'ny )\ {5},
in fact we can choose ¢ ¢ n™, since +*nS, must be
singular subspace of S|, however, atrgt is nota
singular subspace. Similarly n € y', q  t". Thus

(g, y, t, a, n) is a pentagon with no diagonals.

Since (p) holds in T then (g, y, ¢, a, n)liesina
symplecton (say S) This implies that S, = §= 5,
since S=<{a, q) =S, S ={a, y) =35, This contradicts
our assumption that §;, S, are distinct symplecta.

This completes the proof.(see Fig 3).
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Fig. 3

COROLLARY (3.1) Let I be a parapolar space in which xS
Is either empty, line or maximal singular subspace of S, for
each point—symplecton pair (x, S), x ¢ S. If (p) holds then
(§1MSy) is never a line for each pair of distinct symplecta Sy, S,

LeMMA (3.4) Let I' =(P, L) be a parapolar space. Suppose
that xS is either empty, line or singular subspace of rank k
= 2 for each point—symplecton pair (x, S), x ¢ S, if (S;N\S3) is
never a line nor a singular subspace of rank k for every pair of
distinct symplecta S, S, then (p) holds in 1.

PrOOF: Let (xy, xi, X2, X3, X4) be a pentagon with no
diagonals. Since (x'nS) is never a point for each
point—-symplecton pair (x, S), x €8, then by Theorem
(2.2.1), I is semi-strong. Let 8y = {xq, x3), S5 = {xg, x3)
be two symplecta. If §; = S,, then the pentagon

{xp, Xi, X2, X3, X3) lies in a symplecton, and we are
done. So assume §; = S,. Since x; € x3°NSy. It follows
from hypothesis that (x37NS5) is
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either a line or a singular subspace of rank £ >2.

Fig 4

Case 1. Rank(x;nS,) = 1, then by the Rank Lemma
rank (S;NS,) = rank (x37NS,) =1.

Contradicting the hypothesis that (§;"S;) is never a
line nor a singular subspace of rank &

Case 2. Rank (x;7nS;) = k 22, then by the Rank
Lemma '
rank(S;NS,) = rank(x; NS) = k.

Contradicting the hypothesis that ($;"S,) is never a
line nor a singular subspace of rank k.(see Fig4).

LEMMA (3.5) Let I be a parapolar space. Suppose that x-S
is either .empty or contains a plane for each point—symplecton
pair (x, S), x & S. Then SiN\S is never a line for each distinct
symplecta Sy, 52 .
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PROOF.Suppose S1MS, is a line, say, / for a given two
distinct symplecta S;, S; in I'. S; is a polar space
therefore we can find g € S, such that g°n/ is a point
b. Let a € I, a # b. {b} S qg'nS,, so g'nS,= D,
Then it follows from the hypothesis that g*n S, = k > 2.
Therefore we can choose y e §; such that y collinear
to g. y is not collinear to a since y‘nS, must be
singular subspace of S|, however ¢ is not collinear to «.

Fig. 5

By the Rank Lemma:

2 < k = rank (¢*nS,) = rank (S;nS;) = 1.
This is a contradiction. This completes the proof.
(see figure 5).

4. APPLICATIONS

In this section we will state some of the properties of some Lie
incidence geometries that are needed in the proofs of the next
results [COC].

LeMMA (4.1) Let I be the half-spin geometry Dy 4(F) for
arbitrary field F. Then for any point x and any pair of
symplecta S, T we have:

() rank(x*NS)=0,3,x ¢ S
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(o) rank(S~T)=-1, 1, 3.

PROOF. For the proof see [COC].

COROLLARY (4.1) (p) does not hold in Dge(F) for arbitrary
field F.

PrOOF. Since, by Lemma (4.1), there is a point x and
a symplecton S with x 5 such that rank(x= N S) = 3,
it follows by Lemma (3.2) that there is a symplecton
S, such that rank(S; m S,) =3, it follows then, by
Theorem (3.1), that (p) does not hold in D¢ ¢(F).

LEMMA (4.2) Ler I” be the Grassmann geometry Ass(F) for
arbitrary field F. Then for any point x and any pair of
symplecta S, T we have.

() rank(x*"S)=0,2,x ¢ S.

(«) rank(ST)=-1,1, 2.

COROLLARY (4.2) (p) does not hold in Ass(F) for arbitrary
field F.

PROOF. Since, by Lemma (4.2), there is a point x and
a symplecton § with x ¢85 such that rank(x>n S) = 2,
it follows by Lemma (3.2) that there is a symplecton
S, such that rank(S; m S;) =2, it follows then, by
Theorem (3.1), that (p) does not hold in A 3(F).

LEMMA (4.3) Let I be the geometry B, (F) for arbitrary field
F. Then for any point x and any pair of symplecta S, T we
have:

() rank(x* " S)=0,5,x ¢ S.

(+) rank(SNT)=-1,1,5.
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COROLLARY (4.3) (p) does not hold in Eq (F) for arbitrary
field F.

PROOF. Since, by Lemma (4.3), there is a point x and
a symplecton § with x ¢S such that rank(x" ~ S) = 5,
it follows by Lemma (3.2) that there is a symplecton
Sy such that rark(S, m S;) =35, it follows then, by
Theorem (3.1), that (p) does not hold in E, (F).
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