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Abstract
In This paper we generate few families of non-linear
binary constant-weight codes using half-spin geometry Ds s(g).
The ideas used here are the same ideas like those applied to the

geometry Dge(q)-

Key words: Half-spin geometry, Lie incidence

geometries, Constant-weight codes

AMS MSC 2000: Primary 51E30, Secondary 05B30,
9489

* ASSOCIATE PROFESSOR - Math. Department -College of Science -Isiamic

University of Gaza - Gaza, Palestine



Constant-weight codes using half-spin... (48)

4. Introduction

Error-correcting codes have emerged as indispensable
technique in modern telecommunication and information
storage systems. The original ideas were developed in the
early fifties of the last century by Hamming, Golay and others,
mainly motivated and inspired by the fundamental and
revolutionary work of Shannon in the early sixties, some of the
fundamental codes were discovered such as BCH and RS
codes, see [10].

Recently, Many authors have studied a certain type of
codes called constant-weight codes, tables of upper and lower
bounds were constructed for the sizes of a given minimal
distances and a given length, see [4], [5], [6], [7].

Many papers have dealt with the subject from its
algebraic point of view. This paper is one to use geometric
means to define some good binary nonlinear codes. Finite
geometries are considered as the raw material to construct
good codes as professor Ernest Shult convinced me when I
have started my geometry work under his supervision in order
to get my Ph.D. degree

Here, we apply these geometric ideas to get some binary
constant-weight codes. Since there are many geometries that
can be used to derive such codes, this paper is to be considered
the first amongst a series of papers to utilize these geometric
ideas.

This paper is self-contained. For more information about
the half-spin geometries see Shult [3].
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5. Basic geometric definitions

Given a set ], a geometry I over I is an ordered triple I =
(X, *, D), where X is a set, D is a partition {X;} . of X indexed
by I, X; are called components, and * is a symmetric and
reflexive relation on X called incidence relation such that:

x * y implies that either x and y belong to distinct
components of the partition of X or x = y.

Elements of X are called ebjects of the geometry, and the
objects within one component X; of the partition are called
objects of type i. The subscripts, which index the components,
are called fypes. The obvious mapping ©: X — I which takes
each object to the index of the component of the partition
containing it is called the &ype map 1.

A point-line geometry (P, L) is simply a geometry for
which 7] = 2, one of the two types is called points; in this
notation the points are the members of P, and the other type is
called lines. Lines are the members of L. In this paper we
will not be concerned about geometries that contains lines that
are incident with the same set of points, therefore, without loss
of generality we may consider incidence as containment 1.¢., p
€ Pand ! € L,thenp*/ifandonlyifp € L Ina point-line
geometry (P, L), we say that two points of P are collinear if
and only if they are incident with a common line (we use the
symbol ~ to denote collinearity).

The symbol x* means the set of all points collinear with
x, including x itself. A partial linear space is a geometry (P,
L), in which every pair of points are incident with at most one
line, and all lines have cardinality at least 2. A point line
geometry I' = (P, L) is called singular or (linear) if every pair
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of points are incident with a unique line.

A subspace of a point-line geometry I' = (P, L) isa
subset X < P such that any line which has at least two of its
incident points in X has all of its incident pointsin X. (X
means the intersection over all subspaces containing X, where
XcP.

The singular rank of a space I' is the maximal number »
(possibly o) for which there exists a chain of distinct
subspaces {.X;}

D=XcXocXic..cX,,
such that X; is singular for each i, and Xi#2 X, i#].

In apoint-line geometry I' = (P, L), a path of length n is
a sequence of n + 1 points; xq,x;, ..., x, Where, Xi5 Xi+1 Qre
collinear, xq is called the initial point and x,, is called the end
point. A geodesic from a point x to a point y is a path of
minimal possible length with initial point x and end point y.
We denote this length by dr(x, v). The distance function dr
satisfies the following metric properties:

dr: P x P — {0} UNU{w)
(1) dr(x, y) = 0 if and only if x = y.
(i1) dr (x, y) = dr (y, x)
(@) dr (x, y) + dr (v, 2) 2 dr (x, z) for all x, v,z € P.

A geometry I' is called connected if and only if for any
two of its points there is a path connecting them. A subset X
of P is said to be comvex if X contains all points of all
geodesics connecting any two points of X,
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A geometric hyperplane of a geometry I" is a subspace A
with the property that H = P and each line [ of I', / intersects H
nontrivially.

6. Some basic spaces
A gamma space is a point-line geometry such that for
every point-line pair (p, ), p is collinear with either no point,
exactly one point, or all points of /, i.e., prl is empty, consists
of a single point, or /.

A polar space is a point-line geometry I' = (P, L)
satisfying the Buekenhout-Shult {1] axiom:

For each point-line pair (p, 1) with p not incident with |,
p is collinear with one or all points of |,

that is, either | p*~iI|=1 or else p~ > I. Clearly this axiom
is equivalent to saying that pis a geometric hyperplane of I’
for every point p € P.

We write Rad(I') for theset {p: pi = P}, and call it the
radical of I. A polar space I' = (P, L) is said to be non-
degenerate if and only if Rad(I') = <.

A point-line geometry I' = (P, L) is called a projective
plane if and only if it satisfies the following conditions:

(i} T is a linear space; every two distinct points x, y € P lie
exactly on one line,

(ii) every two lines intersect in one point,

(iii) there are four points, no three of them are on one line .

A point-line geometry I" = (P, L) is called a projective
space if the following conditions are satisfied:



Constant-weight codes using half-spin... (32)

(i) Every two points lie exactly on one line,

(i) It Iy, Lare two lines [\, = &, then {/;, 1) is a projective
plane. ({ /;, /) means the smallest subspace of I" containing /;
and /)
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A t (P, L) is called a parapolar
space if and only if it satisfies the following properties:

(i) T is a connected gamma space,

(ii) for every line /; F-isnot a singular subspace,

(iii) for every pair of non-collinear points x, y; x ™" is either
empty, a single point, or a non-degenerate polar space of rank
at least 2.

If x, y are distinct points in a parapolar space I, and if
x"~y*|= 1, then (x, ¥) is called a special pair, and if x"'~y" is a
polar space, then (x, y)is called a polar pair (or a symplectic

pair). A parapolar space is called a strong parapolar space it
it has no special pairs.

7. Definition of the half-spin geometry D, ,(F)

Let B be anon-degenerate symmetric hyperbolic bilinear
form on a vector space V of dimension 25 over a finite field F
of order g. Define the polar space of type Q" (g) as follows:
Let T; be the set of all totally isotropic (TI) i-dimensional
subspaces of V, 1 <i<n-2. Let T, be the class that consists
of all maximal TI subspaces of dimension 7. T}, is partitioned

into two classes denoted by M; and M, subject to the following
rule:

Two maximal TI subspaces my andm; of V belong to the
same class if and only if the dimension of my~m;, has the same
parity as n.
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ie., if nis odd then m;, mybelong to the same class iff
my~m, is of dimension 1,3, 5, ..., n, and if 2 is even then my,
m, belong to the same class iff m;~my is of dimension 0, 2, 4,
L.

Let (P, L) be the geometry whose set of points is one of
the classes say P =M, and the set of lines isthe set L. = T}, _».
A point m; € M, is incident withaline A € 7, ., if and only if
m; O A. The geometry D, (F) is called the half-spin geomeiry
D, .(F). If the order of F is g then we write D, .(¢)-

T T

In this work we are concerned only with the half-spin
geometry Dss(¢);

Here we summarize the construction of Dss(g).

We have a symmetric hyperbolic bilinear form B ona
vector space of dimension 10 over a finite field F = GF(g).
The classes M,;, M, consist of maximal TI 5-dimensional
subspaces. Two TI 5-subspaces fall in the same class if their
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intersection is of odd dimension. So the dimension ofthe
intersection of my~wm, is 1, or 3 for distinct my, ms. Thus, the
points of Dss(g) consists of one class (M,, say) of the two
classes of maximal TI 5-spaces, and whose set of lines
corresponds to the set of all TI 3-spaces, where, a line / that
correspond to a 3-subspace Xis incident with the set of all
points that corresponds to all T1 5-spaces that contain X,

TI 1-subspaces correspond to the set of all symplecta,
where, a symplecton S that corresponds to a 1-subspace Y is
the set of all TI 5-subspaces that contains Y.

TI 2-subspaces corresponds to projective subspaces of
singular rank 3; Aj. TI 5-subspaces of the second class M,
corresponds to projective subspaces of singular rank 4: A,.

Let the map y : P — V defined above, i.e., y(p) is the TI
S-space corresponding to the point p. We will use y for the
rest of the varieties of the geometry; for example (/) is the TI
3-space corresponding to the line 7, and, w(S) is the TI 1-space
corresponding to the symplecton S. The inverse map ' will
be used for the inverse; for example (1) is the symplecton
corresponding to the TI 1-space m.

We will use the same notation * to mean two things; one
to mean perpendicularity for subset of vectors with a bilinear
form, second, to mean collinearity in the geometry.

8. Properties of D; s(q) ,

The following, Theorem 5.1, is one of two theorems of
Cohen and Cooperstein [11] that sets up the connection
between the algebraic and geometric structures. Theorem 5.1
has been modified by Brauaer et al. [13]. They stated that in
conclusion (iii) of their theorem the geometries must be
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quotient of half-spin geometries. The theorem characterizes
all those strong parapolar spaces whose rank is t 2 2 and
satisfying the following property: (x"NS) is empty, a point, or
a maximal singular subspace of S for all point-symplecton pair
(x, S), x not a point of S.

51 Theorem [11]. Letr =2 and let (P, L) be a parapolar
space with no thin lines, whose maximal singular subspaces
have finite rank s, and whose symplecta have rank r+ 1. Then
(P, L) satisfies (x*NS) is either empty, a point, or a maximal
singular subspace of S if and only if one of the following holds:

() » = s and (P, L) is a non—degenerate polar space of
rank r +1 with thick lines,

(i) a: r =2, s 23, and for some natural number n
between 4 and 2s-1, and a division ring D, (P, L) = A, AD), d
=p-st+1,

b: r = 2, s 25and(P,L)= As, (D)/<c> for some
(infinite) division ring D, where o'is an automorphism of Ay,
. induced by a polarity of the underlying projective space
PG(2s-1, D) of Witt index at most s-5,
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(i) » = 3, s 2 4 and for some field F, (P, L) contains
families % | 1 of convex subspaces of (P, L) isomorphic to
Dy(F) and Dss(F) respectively such that Y is the system of
symplecta of the parapolar space, and i (x,S) e PxXwithx
£ S, x'MS is a maximal singular subspace of S then {x}\US lie

in a unique member of I1. The incidence system of lines and
plarnes lying on any point x is A, 2(F) .

(iV)r=4,s=5and (P,L) = E1(F) for some field ¥,
(V}r=35,s=6and(P,L)= Eq.1(F) for some field F.

The relations between some of the varieties of this geometry mentioned below, proofs
can be straight forward or can be deduced from either Theorem 5.1, or can be deduced
from the properties of the underlying polar space.

3.2 Propesition [3]. Let (P,L)= Dss(F) For any field F.
Then the following hold:
(1) Diameter of (P, L) is 2,
(2) 8;, S;€ S then S;NS, is empty or a maximal
singular subspace,
(3) S € Sthen S is a polar space of type Dy ,(F),
(4) If x e P,M € Ay, x ¢M then x*"M is empty or a
plane,
(O)If x €P,M e A;, x ¢M then x*~M 1S a point or
a plane, _
6) M;, M € Ay, , M, # M, then M;~\M, is empty or
a line,
(7) My, M, € Az, My # M, then M;~M,; is a point or
a plane, _ | :
(8) Mie A3, M, € Ay, then MM, is empty, a point
or a plane,

Proof. (for proof see [3]).
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5 3Theorem [9, 12]. The number of points of the finite
classical polar spaces are given by the following formulae:

(Wadg)l = (g™ - g - 1),

Q@2n+1, g) | =(¢"" - /(g - 1)

Q" @, )l = (¢ +1)G" - DHg - D,
Q@n, @)l =(@"- (g"+ Dig- D,
H@n+, @) = (¢ +1)g™ -DAg" - D),
H' (20, ¢)) = (¢ -1)(g”" +1g" - 1).

5.4 Theorem. Let V be equipped with a bilinear form then
the number of isotropic k-subspaces is the following:

lnﬁ k-1 .
[ (q”"“’ + 1) in the symplectic case W(2#, q).

k__q i=0
Mnﬁ k-1 .

| Tl + 1) in the orthogonal case Q(2r+1, g).
L™ g i=0

-—n k-1 .
} (""" +1) in the hyperbolic case Q(2n, q).

YIR=va
} H(q""'” + 1) in the elliptic case X'(2n+2, g), where
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roof. See [13].

5.5Theorem [9, 12]. The numbers of maximal totally

singular subspaces of the finite classical polar spaces are
given by the following formulae:

EWa @) = (g + 1) (¢ + 1) ... (" + 1),
Z(Q2ntL @) =@+ 1) (§° +1) ... (¢"" + 1),
Q@) =2g+ 1) (F+1) .. (" + D),
EQQn @) =@+ 1)@+ 1) ... (q"+ 1),
ZHQn+L @)=+ 1D (@ + 1) . (g + 1),
ZH2n, g =(g+ 1) (@ +1)...(¢" + 1),

9. Codes
For terminology of coding theory used in this section see
[10].

Let F be a field and let » be a positive integer. Letv = (x;,

X3 ., Xn). The Hamming weight function is defined as
follows:

wi(v) = The cardinality of {i € {1,2,3, ..., n}: x, #0}
= The number of non-zero coordinates x; (i=1,2,3,...,n)

This defines a distance function as follows, for any two
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vectors u, v € V we define the Hamming distance
dyVxV—>Z by:

di(u, v) = wiu - v).

A code C of length n and size M over F is a subset of F" of
cardinality M. and we say that C is (», M)-code

If d = minimum {du(u, v) |4, v € C, u #v }; dis called the
minimum distance of C, in this case we say that C is (n, M,
d)-code. If C is a linear vector subspace of V; Cis called
linear code and if the dimension of C is k; we say that Cis [#,
k, d]-code.

If all codewords in C have the same Hamming weight w
then C is called a constant-weight code. An (n, M, d, w)-code "
is a constant-weight (1, M, d)-code with w as the common
weight of all codewords.

Remark if C is a constant-weight (1, M, d, w)-code then
exchanging zeros and ones we geta constant-weight (n, M,
d, n - w)-code.
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10. Construction of the codes
In the following sections we will construct several families of
non-linear binary constant-weight codes using the geometry I"

= Dss5(q)

Family I.

7.1 Theorem. Letp;, p, ..., Pa be the set of all points
in . Let S, $, ..., S bethe set of all symplecta in I
Let G = (gy) be theincidence matrix, where gy = 1 if the
point p; is incident with the symplecton S, and g =0
otherwise. Then the rows of G represent a constant-weight
binary (n, M, d w)nonlinear binary constant-weight code
of parameters:

n=(g+) (¢*+1) (¢ +1) (¢* +1) (¢° +1),
M= g+ 10 -Dig-1),

d=2g -1)g +Dig-1)-2(¢*- Di(g - 1),
w=(q"-1)(g’+ 1)(g-1).

Proof. Since all symplecta have the same cardinality, it
follows that rows of G have the same number of 1's. The
weight of each row .is the number of points in the

corresponding symplecton that is |Q'(8, ¢)| = (¢* - 1)(¢* + Diq

- 1); by Theorem 5.3.

Two rows of G have 1 in the 7" column if the point p; is
incident with both symplecta that corresponds to both rows,
this means that the point is in the intersection of both
symplecta. By Proposition 5.2, two symplecta intersect in a
maximal singular subspace or disjoint, it follows that the
corresponding two rows differ in IS+ {8 or [S)|+ [S,] -
2[S1MS;| positions. The least of these numbers is when the two
symplecta intersect in a maximal singular subspace, it follows
that d=2(¢" - 1)(g* + 1)/(g - 1) - 2(¢* - /g - 1). The number
of rows of G is the number of distinct symplecta that is, by
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Theorem 5.3, M = (¢*+ 1Xg® - 1D/(g - 1). The number of
columns of G is the number of distinct points, that is by
Theorem 5.4, n= (g +1) (¢" +1) (¢’ +1) (¢" +1) (¢’ +1).

Family II.

7.2 Theorem. Let pi, po, ..., pa be the set of all points
in . Let My, Ms, ..., M, be the set of all maximal singular
subspaces of type As in T’ Let G = (gy) be the incidence
matrix, where g; = 1 if the point pjis incident with the
subspace M; and g; = 0 otherwise. Then the rows of G
represent a binary nonlinear constant-weight (1, M, d, w)
code of parameters:

n=(q +1) (" +1) (¢ +1) (¢" +1) (g +1),
M=(g+1)(¢" +1) (@’ +1) (¢" +1) (g’ +1),
d=2(g" - Di(g- 1) -2(¢" - (g - ).
w=(q’-1)/(g- 1)

Proof. Similar to the proof of Theorem 7.1.

Family Ii1.

7.3  Theorem. Let pi,ps, ..., pa bethe setof all points
in . Let My, M,, ..., M, be the set of all maximal singular
subspaces of type A; in I'. Let G = (gy) be the incidence
matrix, where gy = 1 if the point pjis incident with the
subspace M; and g; = 0 otherwise. Then the rows of G
represent a binary nonlinear constant-weight (1, M, d, w)
code of parameters:

w=(g"- 1)i(g - 1),
n=(q+1) (&> +1) (@ +1) (¢ +1) (¢’ +1),
d=2(g"- D(g-1)-2g"- Dig - 1),
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M= (" +1) (¢’ +1) (¢" +1) (¢’ - D/(g - 1).

Proof. Similar to the proof of Theorem 7.1.
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