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Abstract
In this paper we have introduced a kind of point-line geometry

of type D,,(F). Many subjects have been discussed in detail such
as the definition and the construction of this new geometry, a good
example of this geometry is when n equals 5. The main part of this
work has investigated many properties of this geometry. The most
important properties which have been proved in this paper is that

D5.(F) 1s not strong parapolar space of diameter three. In addition we have

proved as well that the pentagon property (p) is satisfied in the geometry of type
D5 2(F).
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1- Introduction

Let V be a vector space of finite dimension » over an
arbitrary field F. A bilinear form B on V is a mapping
B:VxV o K,suchthatfora, f € K; x,y,z € V we have:

(1) B (ox + By, zy = aB (x, 2) + BB(y, 2).

(ii) B (z, ox + By) = aB (z, x) + BB (z, y).
Thus a bilinear form is a linear functional in each of its
coordinate.

A vector ueV is called an isotropic vector, if B (u, u) =0,
and a subspace WV is called fotally isotropic subspace of V
if and only if B(u, v)=0 for all u, ve W.

Given a set I, a geometry I over 1 is an ordered triple
['=(X,., D), where X is a set, D is a partition {X;} of X
indexed by I, X; are called components, and . is a symmetric
and reflexive relation on X called incidence relation such that:
x.y implies that either x and y belong to distinct components
of the partition of X or x =y. Elements of X are called objects
of the geometry, and the objects within one component X of
the partition are called the objects of type i. The subscripts that

index the components are called fypes. The obvious mapping
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1. X-»I, which takes each object to the index of the
component of the partition containing it is called the fype map
1.

A point-line geometry (P, L) 1s simply a geometry for
which |1 |=2, one of the two types is called points; in this
notation the points are the members of P, and the other type is
called lines. Lines are the members of L. If peP and /eL,
then p« [ if and only if pel. In a point-line geometry (P, L), we
say that two points of P are collinear if and only if they are
incident with a common line. (We use the symbol ~ for
collinear)

x" means the set of all points in P collinear with x,
including x itself.
A subspace of a point-line geometry I'=(P, L) is a subset Xc P
such that any line which has at least two of its incident points
in X has all of its incident points in X. <X> means the
intersection over all subspaces containing X, where XcP.
Lines incident with more than two points are called thick lines,
those incident with exactly two points are called thin lines.
The singular rank of a space I' is the maximal number n

(possibly o) for which there exist a chain of distinct subspaces
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Z#XocX,C...CX, such that X;is singular for each i, X; #X; , i
# ], for example rank(J)=-1, rank({p}) = 0 where p is a point
and rank(L) = 1 where L a line.

In a point-line geometry ['=(P, L), a path of lengthnisa
sequence of n+1 (xg,Xy,..,X,) Where, (x,Xi+1) are collinear, xg is
called the initial point and x, is called the end point. 4
geodesic from a point x to a point y is a path of minimal
possible length with initial point x and end point y. We denote
this length by dr (x, y).

A geometry I is called connected if and only if for any

two of its points there is a path connecting them. A subset X
of P is said to be comvex if X contains all points of all
geodesics connecting two points of X.

A polar space is a point-line geometry I'=(P, L) satisfying
the Buekenhout-Shult axiom [SH] :
For each point-line pair (p,. [} with p not incident with /; p is
collinear with one or all points of J, that is | p*~/|=1 or else
| pol. Clearly this axiom is equivalent to saying that p* is a
geometric hyperplane of I" for every point peP.

A point-line geometry I'=(P, L) is called a projective plane

if and only if it satisfies the following conditions [PJ] :
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(i) ' is a linear space; every two distinct points x, y in P lie
exactly on one line,

(ii) every two lines intersect in one point,

(iii) there are four points no three of them are on a line.

A point-line geometry I'=(P, L) is called a projective space
if the following conditions are satisfied:

(i) every two points lie exactly on one line ,

(ii) if /;, L are two lines [\l #(J, then </, l;> 1s a
projective plane. (</;, ;> means the smallest subspace of I
containing /; and /,.)

A point-line geometry I'=(P, L) is called a parapolar
space if and only if it satisfies the following properties:

(1) T is a connected gamma space,

(ii) for every line /; I* s not a singular subspace,

(iii) for every pair of non-collinear points X, y; <ty is
either empty, a single point, or a non-degenerate polar space
of rank at least 2.

If x, v are distinct points in P, and if | xtry*] =1, then (x,
y) is called a special pair, and if x " is a polar space, then

(x, v) is called a polar pair (or a symplectic pair). A parapolar
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pairs {CC1].

In this part. we shall define the varieties of the geometry
By (F) in which we have found out that the symplecta of such
geometry are of some kind of the Grassmannian. So itis
convenient here to look at some of their relevant properties.
Proofs can be found in[CC2, CC1]. We give the definition
and construction geometry of type D, , (F) in Sec. 3, while the
properties of the geometry of type Ds, (F) are discussed in
Sec. 4. Finally, the pentagon and weak pentagon properties
are explaned in Sec. 6.

2- GRASSMANNIANS
2.1. Proposition:[Atl,CC1] Let I'=Ann(D), 2<n<2m-1,m 22
i~ A.(p) is a hyperplane of I" for any point p, if and
only if m=2n-1.
ii- If x, yeP and d(x, y)=d, then the convex closure

(x,y) s isomorphic to 4,,_, (D), d =2
2.2. Proposition [CC2]. Let (P, Ly=4,,(D) for n=4 and
some division ring ID. Then we have the following:
i- (P, L) has the following diagram.
Apip

S

L
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i1~ (P L)isa strong parapoiar space of dlameter 2

ii- (P, L) satisfies (P3), and (F4).,,.

iv- If §,Te S and S=T, then rank (S~T)=-1,0,2.

v-  We have rank (S~ T)=0,2, for all distinct §, Te S, if and
only if n<35.
2.3. Proposition [CC2]. Let (P, L)=4,,(D) for some division

ring D. Then we have the following:

it- (P, L) has the following diagram.

ii- (P, L)1is a strong par%polar space of diameter 2.
ii- (P, L) satisfies (P3), and (F4),,,.
iv- IfS,Te Sand S=T, then rank (S~ T)=2.

3- Definition of the geometry of type D, , (F)

Let B be a non-degenerate orthogonal hyperbolic
symmetric form on a vector space ¥ of even dimension 2n
over a finite field F oforder k. Let S; be the set of all totally
isotropic i-dimensional subspaces of ¥; 1<i<n-2. Let S, be the
class of all maximal totally isotropic subspaces of dimension
n. S, is partitioned into two classes denoted by M, and M,

. . M
subject to this rule: e !
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7. S‘n is partitloned mto two classes denoted by M, and Mz

subject to this rule:

Two maximal totally isotropic subspaces M| and M, of VV
belong to the same class if and only if MM, has the same
parity as n, fe if »n is odd, then My, M, belong to the same
class iff M;~M, is of dimensionl,3,5,....,n, and if n is even,
then M,, M, belong to the same class iff Mi"M, is of
dimension 0,2.4,...... I

The geometry of type B, (F) is the point-line geometry
(P, L), whose set of points P is the collection of all T.I (totally
isotropic) 2—dimensional. subspaces of the vector space V, and
whose lines are the pairs (A,B) where A is a T.I 1-dimensional
subspace of the T.I 3-dimensional subspace B — that is, the set
of (1,3)-subspace flags.

A point C is incident with a line (A, B) if and only if

AcCcB as a subspaces of V. A
n-1,2




Construction of Ds, (F). Consider the polar space A= Q7(10,
F) that comes from a vector space of dimension 10 overa
finite field F= GF(k) with a symmetric hyperbolic bilinear
form. The two classes M;, M, consist of maximal totally
1sotropic S-dimensional subspaces. Two 5-subspaces fall in
the same class if their intersection is of odd dimension. So the
dimension of the intersection of M= M, is 1, 3, or 5.

The geometry of type Dy, (F) is the point-line geometry
(P, L), whose set of points P is the collection of all 2-
dimensional subspaces of the vector space V, and whose lines
are the pairs (A,B) where A is a I-dimensional subspace of the
3-subspace B — that is, the set of (1,3)-subspace ﬂags‘. A point
C is incident with a line (A, B) ifand only if AcCcB as a
subspaces of V.

To define the collinearity, let Cy and C, be two point (the
points are the T.I 2-spaces), then C, is collinear to C, if and
only if the intersection of C; C, =1-space and <C,, C, >=3-

space.

Polar space A
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“The elements of the classes Gy and G, are geometries of
type 4,,(F) and we define them as:

G, Gy ={ AN| 4, (Geometry of type 4,,(F)) is the set of all T.I

2-spaces that 1s contained in N, NeM; or M,}
4- Properties of the geometry of type Ds; (F)
Dsa (F) is a connected non-degenerate not strong

parapolar space of diameter three.

4.1 Proposition.The geometry (P, Ly= Ds (F) is of diameter 3.
Proof: Suppose that p and q are two arbitrary points in P.
Then we have 2-spaces W(p)=C;= <x;,x3> and
Y(QCor=<xg,x>.  If <xy,X%3>M<xp,%4> is a |-space, say <x>,
where x=X,=X,, then we have two cases:

1- %3"NC=C,

2- x5t C=<x>.,

In case 1, <x3,X4,x> forms a 3-space and (<x>,<x,x3,X4>) is
a line containing the two points, where <x>C<x,X3>,
<X, X CT<X,X3,X4>.  Thus the two points are collinear, this

means that d(p,q)=1.



In case 2, B(x3,x4)#0 and C; is contained in a 5-space T,

say T=<x,X4,u,v,w>, meanwhile x;isoutside T. Then %3 T
is either T or a
hyperplane of T the firstis impossible; because the maximal
T1 space is 5-space, sO x77~T is a hyperplane of T that is
<x,u,v,w>.  Then we have two lines (<x> <x,x3;,u>) and
(<x>,<x,X4,05>) which means that the 2-space <x,u> is the third
point that is collinear to each of C; and C,. Thus d(p,q)=2.
If <xy,x5>M<x,,%4> }=0-space, then we have three cases:

1- %' C=C,

2 XguLf\CQMCz

1

3- X Cr<xo> and x5 NCo=<x>

In case 1, <Xp,X3,X4> and <x,X3,%x;> form 3-spaces. Thus
(<X3>,<X2,%3,%4>) and {<x3>,<X3,X3,%,>) are lines containing
the points <xp,x4>, <Xp,%x4> and <Xp,%X3>. Then we have:
KIPC<X2,Xe>,  X3XPPO<X1,X,X3> and <> C<Xp, X35>,
<X9,X4™> }E&<X,X3,Xs>. This means that d(p,q)=2.
Case 2 is similar to case 1.

In case 3, we have a 5-space containing <Xp,X4>, SAY
T=<x3,X3,X,y,2>, then x3lnTm<x'4,x,y,z> and

L
X NT=<x,,x,y,2>. Thus <x,,X;,X,y,z> forms a 5-space, then
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<XX3X)>, <XXaxs> and <x,Xp,Xp> are 3-spaces. Then we
have:<x;>C<x,X3>, <X3,X>C <X, X3,X> ), <X C<X3,X>,
<K, KgPC<KX3,X4” and <P C<K X, <K, X4 C<K,X,X4> ).
This means that we have three lines: (<x3>,<x,,X3,X>) is the
first line contamning the points <x;,x3> and <x,Xx3>.
(<x>,<%3,X4,X>) 18 the second line containing the points <x,x;>
and <x,X4>.  (<X4>,<X2,X4,X>) is the third line containing the
points <x,x;> and <x3,X4>. Hence d(p,q)=3. O

4.2, Corollary. (P, L)=Ds, (F) is a partial linear connected
space.

Proof. For any two distinct points C;, C, (the points are totally
isotropic 2-dimensional subspaces of V) we have either
CinCy=¢p then we can not find any T. I.(totally isotropic) 3-
space including 1-space and contains both of them, so, the
points are not collinear or from the previous discussion, the
collinear two points C;=(x,,x) and C,=(x,,x) have only one T.I
3-space that contains each of Cy=(x,x) and Cy=(x,,x), which
is {x,x1,x;) . Thus every two points have at most one line.
4.3. Corollary. The geometry (P, L)=Ds,(F)is a gamma
space.

4.4. Proposition. Ds, (F) is a parapolar space.



Proof. The geometry is a connected gamma space has bee

done. For any line / we show that I* is not singular. Assume
that [ have two points p and g, where ¥(p)=<x,,x> and
W(q)=<xy,x>, then /=(<x><x,x;.xp>). If we take r tobea
point such that W(r)y=<x;x,>, then r is not incident to / and
(<x,>,<X,X,X;> is  containing  the points and p,
(<x>,<X,X;,X2> 1$ a line containing the points rand g, then
rel*. Since the point <x,x;> is contained in a 5-space, say
T=<x,X,,u,v,w>, then XA T=<x x,,u,v>. Take the point s to
be the 2-space <w,x>, then (<x>,<x,X,;,w>) is a line containing
the points p, s and (<x>,<x,X,,W>) is a line containing the
points q, s.then selt. Since <x|,X;>M<x,w>=0-space, ris not
collinear to s. Hence [*is not singular. Proposition 4.1 and
Cor. 4.2 automatically satisfy the remaining part of the
conditions.

4.5. Proposition. (P, L)= Ds, (F) is not strong space.

Proof.  Consider the case of the two points of the form
Cy=<x1,%3>,  Cr=<xp,x4> such  that x5 Cy=Csy,  and

X" Cy=<x,>, then B(x,x4)=1. If
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Z=<x3%> is a 2-space that falls in the intersection of two
spaces containing C;=<x,x3>, Cy=<x, x> respectively, then
Z, <X3,%4> lie in a 3-space and they intersect in a 1-space, say
X. Since x;~X, then x must be x, and same for Z, <X1,X3> their
intersection is a I-space, say y. Soye<x;,x;> but X4~y, then y
must be x3. Thus the only 2-space is <x3,x,>. Therefore the
points C, and C; are special. [

5~ Symplecta of Ds, (F) and their properties
There are two kinds of symplecta in Ds, (F) the first is the

Grassmannians of type 4,,(F) that are located as symplecta of
the geometries of type 4,,(F). Since each object of the classes
G, and G, are a Grassmannians of type 4,,(F)and each of

them corresponds to a T.I 5-dimensional subspaces of V, they
are classified into the two classes G; and G, according to the

rule:

Two geometries 4,, and 4, (each of them is a geometry of
type4,,) belong to different classes if and only if M, MM, is

of dimension 0, 2 or 4 (M, and M, are the correspondent
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maximal T.1 5-dimensional subspaces to
4, and 4, respectively).

Remark 1. We shall give a notation for each geometry of type
4., in Dsy (F) such as 4, which means that the set of all T.1.

2-spaces are contained in the T.I. S-space 7.

Remark 2. Each geometry of type 4,,(F) will be denoted by

Ap which means that the set of all T.1. 2-spaces are contained

in the T.1. 4-space D.

So we say a geometry 4,,(F) is a sympiecton of a
geometry 4,, and then a symplecton of the geometry Ds, (F)
iff Ap is a symplecton of 4, and DcT. |
A, and 4, belong to the same class if and only if M, M, is
of dimension 1, 3 or 3.

Now the symplecta of the geometry Ds, (F) are the
geometries of type 4,,(F)that are corresponding to the set of
all T.1. 4-spaces.

For example Ap (Ap 1sa geometry of type 4,,(F) and D isa
T.I 4-space) is a symplecton of Ds, (F) iff there exista T.I 5-

space ( corresponding to the geometry 4,, in which 4,,(F) is
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a symplecton) containing DD, we define symbolically the class
of symplecta (S)of this kind as:

S={Ap Ay is the set of all T.I. 2-space that contained in D and
DcT, TeM; or My}
The second kind of symplecta is a geometry of type Dy,

in which each symplecton corresponds to a T.I 1-dimensional
subspace of V and we define this kind as: De={D(x)| D(x) is
the set of all T.I 2-space that contains x, x&$;}.

5.1. Proposition. i- Let 4,, 4, be two symplecta with
A, # A, ,thenrank(4, n 4, )=-1,0,2,

- It symplecta Dy and D, are of type D, then
rank(D Dy)=-1, 0.

Proof. i- If 4, and 4, are symplecta of the same geometry
A, then DT and D,cT, so D,nD,=T.I 3-space which
means that rank( 4, N 4, 2.
Now if 4, and 4, aresymplecta of different geometries 4,
and 4, respectively, then we have two cases for 4, and 4, :

[- 4, and 4, are in the same class (The classes G; and G,).

In this case we have either dim(T,~T;)=1 or 3, for
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dim(T;~T,)=1, if we choose D, ~ D, =the same l-space, then
there is‘no any T.I. 2-space contained in each of D, and D, this
gives 4, m 4, =¢ and rank( 4, n 4, y=-1. For dim(T"T,)=3,
we have three possibility D,n D, =1-space or 2- space or 3-
space, this gives the following: 4, m 4, =¢ or apointora
plane respectively so, rank( 4, ~ 4, )=-1,0, 2.

2- 4, and 4, arelocated in different classes (one of them
in the class G, and the other in the class G,), then we have
dim(T;"T,)=0, 2, 4. For dim(T;"T,)=0, any choice of D, and
D, gives D, D, =@ and 4, n 4, =@, then rank( 4, ~ 4, )=-1.
For dim(T,;"T,)=2, one choices of D D, =2-space, then
4, n 4, is asingle point and rank( 4, ~ 4, )=0. The last case
where dim(T;~T,)=4 has only two choices, either D, D, =2-
space or 3-space, which means that 4, ~ 4, is a single point
or a plane, then rank( 4, ~ 4, )=0,2. Hence we deduce from
the all previous cases that rank( 4, n 4, }=-1,0, 2.

ii- For this kind of this symplecta we have exactly two

cases either the T.I. l-spaces x(D))and x(D,) are disjoint or
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< x(D,) X(D2)> is a T.I. 2-space. F hus Dng is elther empty

or a point and so rank(D;~D;)=-1, 0.

Remarks. We have proved in Ds, (F) that if 4, and 4,
are two symplecta of the same geometry 4,(4. is a
Grassmannian ~ geometry  of  type 4,,(F)), then
rank( 4, n 4, }=2. This result agrees with the assertion of

proposition 2.3. [CC2].

5.2. Proposition. Ler (p, 4,) be apair of a point p and a
symplecton 4,, then either p* ~ A, is empty ora projective
plane.

Proof. There are two cases either pe 4, or p¢ 4. I pe d,,
then the T.I. 2-space C (the point p) is contained in the T.1. 5-
space 7. Then we have either the case that the T.I. 4-space D
(DcT) meets Cisina l-space say x, then the set of all T.1. 2-
spaces that are in D and contain x constitute a T.I. 3-space (a
projective plane). Thus p* 4, is aprojective plane i.e,,
rank(p~ v 4,)=2 or C ¢ D which means that pe 4,. If p¢ A,

then there are two cases:



- C~T=1-space, say X, then elther C~D=X, S0 Lhe set of

all T.I. 2 spaces that are containing x constitute 3-space in D.
At the same time we have (C—x)*~T =D, then p*n 4, isa
plane ie., rank(p*m4,)=2 or CAD=0@ and p*  4,=, thus
rank( p* ~ 4,)=-1

2- ¢ ~T =0, in this case ('~ D=@ so, there is no any T.1. 2-
space in each of C and D ie., p* n 4,=¢, thus rank( pr A, -

1. Hence all cases give us two possibilities either

rank({ p* m 4, )=-1 or 2.

5.3. Proposition. If (p,D) is a non-incidence pair of point p
and a symplecton D of type Dy, then either p* D .is a line or
emply.

Proof. the pair of (p.D) is a pair of T.L. 2-space Cand a T.I.
I-space x(D), then either x* nC is a l-space or all C. If
¥t ~C is 1-space, then there is no any T.I. 2-space that is
containing the l-space and collinear to p which means
praD=@. If x*~C=C, then there are two different T.I. 2-
spaces contain x(D) and collinear to the point p, this means

that there are two collinear points (a line)in D and each of
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1hexs coiimear p- ence pt mD is a line and
rank( p* " D)=-1, 1.
5.4. Proposition. If p and g are two distinct point of the

geometry Ds,(F) with d(p, ¢)=2, then the convex closure (p,q)

is either a symplecton of type D, or a symplecton of type A3z

Proof.  Since p and ¢ are non-collinear points then by
proposition 4.1, either ¢, nC,=1-space (the points p and ¢ are
the T.1. 2-spaces ¢, and C, respectively) or C, and C,
constitute a T.I.4-space D. If C, nC,=1-space, then the convex
closure (p.g) is a symplecton of type Dy. The second case
gives a symplecton of type 4,
6- Pentagon property

El Atrash in [At1] has given an equivalent property to (p) in
parapolar spaces of rank at least three in which we shall show

that the pentagon property hold in the geometry Ds (F).

6.1. Definition (pentagon property, [At2]).

(P) If x,, x|, X2, X3, X4 are five points in a parapolar space,
where x; is collinear to x;;; and x; is not collinear to X4z then x;
is collinear to one point on the line x ;.; X 43 (indices are taken

modulo 3).
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We say that (xg, X1, X2, X3, X4) IS a pentagon with no
diagonals if x ; is neither collinear to X j»2 NOT X i3 (indices are

taken modulo 5).

6.2.Theorem [Atl]. Let I' be a parapolar space of rank at
least three. Suppose that x*~§ is empty or a line for all
point-symplecton pair (x,8), xe¢S. Then the pentagon
property holds if and only if 1S, is never a line for every
pair of symplecta S,. S,.

6.3. Corollary (P) holds in the geometry of type Ds, (F).

Proof. In Ds, (F) for each pair of point-symplecton (x, S) and
x¢S we have proved in propositions 5.2 and 5.3 that xS is
either empty or a line. Since we proved also in proposition 5.1
that S, S, empty or a point or a plane for every pair of
symplecta §,,S,, by Theorem 6.2 the pentagon property holds
in s, (F).
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