Codes of Constant Lee or Euclidean Weight over
The Ring F, + uF,
S. Sadek*

M. El-Atrash**
A. K. Nagi*=+

Gl yaila
ol ol amyy Zy dilad e ol Lee s <l Aghtdl a0 s [5] Carlet Rt
OShs ¢ AEY i e i Baclid S Lee 5y el Agaadi udl il 3 [9] Wood
pLa¥l ol ¢S5 Fy o P 481, [6] ¢ [4] ¢ [3] ¢ [2] ¢ [1] cufalsh o yoal i
B Tl L e 603 5 AT il e gy o 55 05 B 034 ol A (e s
R = Fy+uf, alall o bl el A (b ) JLeSY Wslona iy lggle aall ae il
O Buclid 1355 Lee o)y cpesstine R o Aol el s iy i f3n 3 1
Abstract
Carlet [5] determined the linear codes over the ring £, of constant Lee
weight. Wood [9] has determined linear codes of constant Lee or Euclidean
weight over the same ring following a different approach from that of Carlet.
There is interest in the ring R = F, + uF, [11.121.[31,[41.[6]. This interest

arises from the common properties between this ring and other rings like Z, and

Fa.
In this paper we describe linear codes of constant Lee or Euclidean weight
over the ring F, + uF,.
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Introduciion

Recently there has been interest in the ring Fz + ufF,. For example
(1], [2], [3], [4],[6]. Because of the “nice” properties of this ring, many
applications of coding theory have been made, and others are to be given.

Over finite fields, any linear code with constant Hamming weight is
a replication of simplex codes. Several proofs havé.been givéri to this
result (see for example [3]). Carlet [5] has proved a similar result for
linear codes of constant Lee weight over Zs. Wood [9] has generalized
these results to codes of constant Lee or Euclidean weight over the rings
sz , p prime, giving different proof for Carlet’s result whenp = 2. In
these results, coordinate functionals and their orbits under
automorphisms of a code C played an essential role, in addition to the

extension theorem [11], [13]. Because of this, . Wood has proved the

following theorem:
Theoren [9]

Let C « R*, R =24, be alinear code of constant weight, either Lee
or Euclidean weight. If 2 e C" occurs as a coordinate functional of C,
then (up to +signs) every other linear functional u in the Aut(C)-orbit of
A also occurs as a coordinate functional of C.

In this paper we prove a similar theorem, as well as some other

results of Wood [9] and Carlet {3] when R isthe ring F) + uF,.
1. The ring Fy +uf,
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The ring R = F, + uF, is introduced in [1], [2], [3], [4] and [6] (here
Fy = {0, 1} is the binary field). R = {0, 1, u, 1+u} with &= 0. Addition

and multiplication in R are given by the following tables:

+ 0 1 v l4u o 0 1 u  lfu
0 0 1 u  1+u 0 0 iy 0 0
1 1 0 i+u wu i 0 1 u 1+u
u w 14w 0 ] u 0 u 0 u
u | 14w u 1 0 I+u | 0 14+u  u 1
Tables (1)

Example: As a simple example we can view F; + uF; as the ring Z{i]

where i is the complex number V-1 withu =1 +1i.

A linear code C over R is simply an R-submodule of R”. Elements of
C are called codewords. The Hamming weight of a codeword x = (x, ...,
Xp) is the mumber of non-zero components in x. The Lee weight of x is

given by the equation {6]

we (x) =y wi, (%), (1.1
=l
where
0 if x, =0
wi, (x,) =41 if x, =1 or l+u.
[2 if X, =u

Let ny(x) be the number of the zero components x; in x, ny(x) be the
number of components x; in x which are equal to u, and #;(x) = 1 — m(x) ~
m(x) i.e. m(x) is the number of the components x; in x which are either 1

or I +u. Then the Lee weight wr(x) of x can also be given by
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W) = m(x) +2 m(x),  xeR” (12)
The Buclidean weight is given by the relation
ng(x)ﬂZW-tE (‘xj): (13)
)
where
0 if x =0
wig (%) =<1 if x=1 or l+u.
4 if X, =U

-As above, we have
wig(x) = ry(x) + dmfx), x € R (1.4)
2. Chain Rings and Module Decomposition
A ring R islocal if forevery a € R, eitheraor 1 —a is a ynit in R. As
in [12] chain rings are local rings R whose maximal ideal M is principal,
say M = (m). It follows that every ideal in R is principal and of the form
M = (1} for some ;. The ideals form a chain
R = (1) o (m) > () o ... o (Y o (") =0, (2.1)
where m® = 0, but w20,
When R is achain ring as in (2.1), every module C over R admits a
decreasing filtration

ComComCo...om ' Com’C=0, (2.2)

for some s < /3, as well as a direct sum decomposition
F 4 i\ Yo
Cx ?:3(12 Km?H)' 2.3)

The ring R = Fy + uF is obviously a local ring, so we have

M=uR = {0, u}, 2.4)
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and so, (2.1) becomes

R=@YouR>u'R=0,
with #= 2, and (2.3) becomes

C= (RIw)" & (R/>))" (2.5)
Note: In [7, definition 3.6 and corollary 3.8] Norton and silidgean have
proved that

Cz (Riw) @R/ = wR) ©(R): (2.6)
where J; is the number of rows divisible by #' in a generating matrix G in

standard form for C, and that /; + I, is the number of rows in G.

3. Extension Theorem

Definition [11]: A right linear automorphism S R" = R" is a right
monomial transformation if there exist units Uy, ..., uy in the group U of

units of R and a permutation & of {1, ..., nysuch that, for any x ¢ R”

JOO =R, oy X0} = (11X1), ey Unogy). (3.1)
If U is a subgroup of Uand u,, ..., u, € U, we say"that fis a U-monomial
transformation.

If U is defined as above, and if we view the additive gfoup ofRasa
finite abelian group G, then left multiplication by » ¢ U defines an
automorphism of G.

We write v~ 5 if s = rv for some € U. The orbit of v under Uis.

orb(v) = {5 € R: s m v},
The symmetrized weight composition determined by the subgroup U

is the function swe: R” x R ~» Z given by
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swe() = Y m(x),

seorb(v)

where
ny(x) =|{ix;=s},x e R, s e R.
If 5 e orb(v), then swes=swey.The function £ R” — R” preserves swe if

swelflx)) = sweyl(x) for allxe R, vek

The Extension Theorem [11]:

Suppose that R is a finite Frobenius ring and that C < R" is a right
linear code. Fix a subgroup U of the group of units of R, which gives rise
to asymmetrized weight linear composifion swc. Then any injective rigni
linear homomorphism f: C —R" which preserves swc extends to a right

U-monomial transformation.

Note: (i) Other versions of the extension theorem can be seen in {13},

(ii) For the definition of a Frobenius ring see for example [10].

Now, the ring R = F» + uF is a finite Frobenius ring and satisfies the
conditions of the extension theorem with Lee weight and Euclidean

weight as the required weight compositions, so the extension theorem is

valid for R="F, + uFa, with U= {1, 1 +u} = U
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Main Results
4. Orbit Structures

The linear automorphism group Aut(C) acts on C and C* = Homgx(C,
R), the linear dual of C, Qur main interest is the action on C*. However
C* = C so we will work directly with the action on C [9].

In the next results, we will denote elements of C as pairs , x = (x;,

X@y), where x) € (u’ R)f' as i (2.6). An astrisk » means that the entry can

assume any value; ur means that every component of the entry is a
multiple of u; u means that at least one component of the entry is u; v
means that at least one component of the entry is a unit (either 1 or 1 +
).

Theorem [

For any linear code over F; + uf;, the orbits of Aut(C) on C are given by

the table:
Orbit Representative ) Size
(v, v) (0, e AT PARS)
(u, us) (e, 0) | (2" -2
(0, vu) (0, ue) 2
(0,0) (0, 0) !

Table (2)
Proof:

For the first case of the table (2), « represents the entry in (uR)" -So

we have 2" possibilities (including the O-entry). Every one of these
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possibilities will appear with the 2 (2" -1) possibilities of appearance
of a unit in some component of the entry represented by v.
For other cases we can follow the same way of counting to complete

the table. (0

Now we state our first result on constant weight codes over R = Fa+

uF,. We view a linear code. C a;s. an abstréct R-module as in (2.6),
equipped with an embedding in R”". The embedding is given by »-
coordinate functionals A, ..., Ax € C* IfChasa generator matrix G,
then the columns of G are the values of the A; evaluated ona set of

generators for C.

Theorenz 2

Let C — R" be a linear code of constant weight, either Lee or
Euclidean weight. If A e C* oceurs as a coordinate functional of C then
every other linear functional uin the Aut(C)-orbit of A also occurs as a

coordinate functional of C (up to possibly permuting 1 and 1 + ).

Proof: Cviven any p in the orbit of &, there exists f & Aut(C) carrying A to
. Then f preserves weight since C has constant weight. Since R isa
Frobenius 1ing, aﬁd # € -> R"is an injective homomorphism, then by the
extension theorem [11], (ap to permuting 1 and 1+u) fextends to an

automorphism of R”, thus . is another coordinate functional of C.0

Definitiﬂn [9]. A linear code is called non-degenerate if it has no zero-

coordinate functionals.
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Example: The code C with generator matrix G=[1 1+u ul is a

non-degenerate code of cardinality 4, length 3 and constant Lee weight 4.

Remark: Following Wood [9], two linear codes of length » and constant
Lee or Euclidean weight over R are equivalent if one can be obiained
from the other by an automorphism of R” with possible permuting 1 and
I+u. This means that the two codes have the same collections of
coordinate functionals (up to permuting 1 and 1+z). The code C is an m-
fold replication of the code D if each functional of D has multiplicity m
in C.

Theorem 3
Let C be a non-degenerate linear code of constant Lee weight over R =
Fo + uFy. Then C is equivalent to the replication of a code D whose
coordinate functionals consist of all the non-zero linear Junctionals on D.
The linear codes C and D are isomorphic as R-modules, each of
cardinality 2"**:. The code D has length D) —1 =25 1 while the
code C has length m(2"** — 1), for some positive integer m.
Every non-zero element of D has Lee weight L= D| = 2"** while

every non-zero element of C has Lee weight ml.,

Proof: By Theorem 2, the orbits of linear functionals {up to permuting 1
and 1+u) must occur in the collection of coordinate functionals of C.
Because C is non-degenerate, no zero functionals oceur.

Let «, B, y denote the number of times the orbits (+,v), (u, ur), (0, vur)

(up to permuting 1 and 1+u in pairs (+, v) only) occur in the coordinate

functionals of C,
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Let ny(x) and ny(x) be as in (1.2). We have wi(ux) = 2m(x), since W =0.
Tn C we have two types of non-zero elements
(a) elements having only (s and s as components, in which case ux =
" 0 for every such element x, so wiz(ux) =0 and wiz(x) = 2m(x), since
ni(x) = 0.

(b) elements having 1’s and (1+u)’s, amdng their cdmponents. In this
case we have wiy(x) = wiz(ux) (because C is of constant Lee weight,
and ux # 0). It then follows that m(x) +2 m(x) = 2m(x), and hence
mx) = 2 mfx) (Le. the number of occurrences of 1’s and (1-+u)’s is
twice the number of occurrences of # in x).

Let x = (0, ¢) and y=(e,0)beasin table (2). Therefore, u.y = 0 (since

only u’s and 0’s appear it y).

Now, following the calculations of table (2), we have

m(x)= 2" q,
) = 20 (25 - Do+ (24 - 1) 247 B+ 27y, (4.1)
mo(y) = 245225 - Do+ 2807,

From the constant weight conditions wiz(x) = wiy(ux) = wir(y), it follows

that my(x) = 2m(x) = my(y). Then solving the system of equations (4.1)

with this information, we get that o = 2p and B =y and wiz(x) =2t p=

wiz(y) (since w(x) = m(x) + 2 mfx)), i.e. the constant weight of Cisa p-

muitiple of 2%, C has length (2"**2~ 1)B, and so C is a anoid

replication of D, where D is a code of minimum constant weight 2%,

and minimal length 2"**:— 1. This completes the proof for the Lee

weight case. [
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Example: For/, =], = 1, the smallest example occurs where B = 1, hence
a =12,v=1. Therefore our replicated code D is of length 7, constant Lee
weight 8 and cardinality 8. A generating matrix has the form
{0 u 0 uwwuud

G“(IIIIOou'
For Euclidean weight we have;
Theorem 4
Let C be a non-degenerate linear code of constant Euclidean weight
over R = Fy + uFs Then Cis equivalent to the replication of a code 1)

whose  coordinate functionals consist of all the non-zero linear

Junctionals on D.

Proof:

For elements x, y e C, Whére x is of type (b) and y is of type (a) we
have  Wiz()) =4 m(y), winx) = m(x) + 4 my(x),(by 1.4).
As C is of constant Euclidean weight, and ux = 0,
wig(x} = wig(ux) = wig(y).
Then

m(x) + 4 m(x) = 4n(x) =4 m{y),
and so

#afx) = (3/4)n(x) and n,(x) = my(y).
Thus considering again the elements x = 0, &), y= (e, 0) and referring to
the system of equations (4.1), we have o = 2B and 1= {2748 (as
was given by J. Wood [9]).
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Also, calculating the Euclidean weight of x and y, we have that C is the
replication of a code D of minimum length 2hrth .y gl (2R 1)
and constant Buclidean weight L = 2iDj = 24**"!. Thus Cis a p-fold
replication of D. [l

Example: If L =5 =1, thena=7= 2. The smallest example has p=1,

a =7y =2, A generating matrix has the form

G_ﬂOuOuquG
11t 0w ouou)

The resulting code has cardinality 8, length 8 and constant Euclidean
weight 16.
Conclusion

What we have introduced in this work is that results examined by I.
Wood [9] over the ring Z4 are still valid over the ring R = Fo + uF,. The
question is: Do these results, or possibly relevant results, still hold for
other Galois rings?
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