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Abstract
Algorithms based on Finite Difference Time Domain technique for the

analysis of planar scatter structures are described. The scattering parameters
for various geometrical structure are computed and the results found
consistent with either proposed values or values previously published. We
iry to solve the scattering problem by using absorbing boundary condition
(ABC) at boundaries. Excitation pulses that used are sinusoidal and
Gaussian. An example illustrating the use Mur’s first order boundary
condition was introduced. The proposed approach could be used easily in

designing various waveguide structures,

* Professor of Applied Mathematics, Departinent of Mathematics, Ain Shams
Umverszty, Egypt.
. Professor of Physics, Department of Physics, Islamic University of Gaza, Palestine.
** Assist. Professor of Mathematics, Department of Mathematics, Islamic Umversxty
of Gaza, Palestme



56 Analysis of Planar Scattering of Twos.

1. Inéroduction

The Finite Difference Time Domain (FD-TD) technique is rapidly becoming
one of the most widely used computational methods in electromagnetic
problems [1-18]. There are several reasons for this, including the increased
availability of low cost but powerful computers, and increasing interest in
electromagnetic interactions with complicated geometries {2]. The
combination of simplicity and power makes FD-TD such a popular method.
The most satisfactory solution of a field problem is an exact mathematical
one, but it is rare for electromagnetic (EM) problems to fall nearly into a
class that can be solved by analytical methods. Complexity of the solution
region, mixed types of boundary conditions, time-independent boundary
condition and inhomogeneous medium are some reasons that make classical
approaches fail. Whenever such complexity arises numerical solutions must
be employed. The most powerful techniques of the numerical methods
available for solving such problems is finite difference time domain method
(FD-TD). The finite-difference-time domain (FD-TD) method is well-
established numerical technique for the analysis of a great variety of
electromagnetic problems. It is based on the direct discretization of
Maxwell’s time-dependent curl equations by using central finite-differences.
The finite difference time domain has been gaining popularity because it
has several advantages, for example, it leads to an explicit scheme (avoiding
matrix inversion); the time domain solution is obtained directly. Simulation
of electromagnetic problems using the finite difference time domain (FD-
TD) method was first proposed by Kane Yee [1]. The method has been
applied to various electromagnetic problems such as scattering, radiation

and integrated-circuit component modeling [2-6]. Many of these
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applications involve modeling electromagnetic fields in an unbounded open
space. Due to the limited storage space of computers, numerical
computation have to be finite. Therefore, a certain type of boundary
condition, which is called absorbing boundary condition (ABC) [7-14] or
outer radiation boundary conditions (ORBC), need to be applied on outer
boundaries of the computation domain to simulate the unbounded physical
space. A popular and famous one is that suggested by Engquist and Majda
[7] with the discretization given by Mur [8]. This is based on approximation
of the outgoing wave equation by linear expressions using either a Taylor or
a Pade approximation. Mur absorbing boundary conditions [8] which widely
used are known nowadays as Mur absorbing boundary conditions. There are
two forms of Mur absorbing boundary conditions known as Mur first order
ABC and Mur second order ABC due to the degree of approximation used
in both. Yee[l] hadn't used ABCs to model his unbounded scattering
problem and instead he used a pure electric and magnetic reflectors at the
boundaries. In this paper we try to solve the previous problem by using
ABCs {7-14] at boundaries, and a brief discussion will be also introduced,
as well as a modification on the structure will be made and treated.

2. FDTD method and Yee algorithm

The enormous difficulty of solving Maxwell equations is leading to the
invention of various numeric methods of solution, among others the Yee
algorithm [1]. One of the principal problems for the numerical method is the
imposing of boundary conditions. We will see some boundary conditions
that absorb an electromagnetic wave traveling outside the zone of interest
and being able to simulate a planar waveguide extending to infinity. The
FDTD method {8] provides solutions for time-dependent Maxwell

equations. This method does not use potentials, but rather is based on
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Eand Hfields in a three-dimensional space in such a way that all the
E field components are surrounded by four circulating components of the
field H, and all the H field components are surrounded by four circulating

components of the field E {8].
In an isotropic medium (y, &, and ¢ are independent of direction i.e.

scalar), Maxwell’s curl equations can be written as

. o H
VxE =~ -
g vy )
- .. o E
VxH=0FE+&——

Every curl equation can be separated in the rectangular coordinates into the
equivalent three scalar components. Both equations yield the following six

equations. They are given ( i.e. for Egs. (1),(2) above) as follows:
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where A , € and © are the medium permitivity, permeability and
conductivity respectively.

In order to determine discrete representations of these partial differential
equations, the spatial region of interest is discreticized and the cartesian
coordinates of the vector fields E and H are interleaved in both space time
as specified by Yee [1]. By using the Yee's cell, the electric field
components E,, E, and E, are located on and assumed to be constant across
each edge of the primary lattices cell with the magnetic field components
H,, H, and H; located on and assumed to be constant a cross each edge of
the secondary lattice cell. In addition to a one-half spatiai-cell displacement
between E and H, there is also a one-half time-cell displacement.

We also assume that the media are piecewise uniform,
te. Ax=Ay=Az=A but& =4 ; time increment is not. Following Yee's
notation [1], we can define a grid point in the solution region as:

(i,j,k) = (z'Ax,jAy, kAz, n5t) and

F G, j, k)= f(idx, jA, kAz, nét) ©)
Using the central difference approximations which second order accurate;
we set,
) "G+ 2, k) - F-1/2, ),
gx_fn(i,jak)mf (l+1 J )Af \g‘ 1/2j k)'i‘O(AZ) (10)

nrlf2 r2 S S
gt—fn(i:jak)mf (I:Jsk)af (Ibfak) +O(52) (11)

Applying Eq.(10) and Eq.(11) to Maxwell’s scalar equations above, we get

the following equivalent finite difference approximate formulations, as
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Yee [1] distributed the field components around a grid cell as shown in Fig. 1.
An additional consideration for the finite-difference solution to scatter

structure is the stability of the numeric solution. The spatial increment

A must be small compared to the wavelength ( usually A 710 where A is

the wavelength ) or minimum dimension of scatterer. The condition on O

( time increment) which ensures stability of FD-TD mode is {16,17].

1
o= 1 1 1 (18)
Cmax\/ 2 + P + 2
(&x)"  (Ay)"  (Az)
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where ¢ ., is the maximum wave phase velocity within the model. Since

max

Ax = Ay = Az = A Eq.(18) can be expressed as:

Jn (19)

Z
J \ E,
X
EZ
H}’
E, E,
Ex
(1,3:K) E,

X
Fig. 1. Position of the electric and magnetic field vector components about
a cubic cell of the Yee space lattice.
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3. Seurce considerations

The two basic type of sources, which are plane waves and current line
sources, are treated differently [17]. When the excitation soutce is assumed
to be either a sinusoidal or Gaussian pulse plane wave, the computational
domain is separated into an inner region, then the total fields are calculated,
while in the outer region, only scattered fields are calculated. The scattered
fields are defined to be the total field minus the incident plane wave. The
incident fields are subtracted from the field quantities just within the inner
regions, while they are used to calculate field quantities just beyond the
inner region. The incident fields are added to the field quantities just outside
the computation regions, while are used to calculate the field quantities just
beyond the inner region. The incident fields are added to the field quantities
just within the inner region. The implementation of the current line is
straight forward. In this situation, the total fields are calculated within the
enter computational domain. Current line sources are essentially point
sources in the two-dimensional simulation. For the E-field polarization, an
electric line source in z-direction is the source, while for H-filed
polarization a magnetic line current in the z-direction is the source. Hence,
the value of each current source is added to the value of either E, or H,,
depending on the polarization, at a single point at every time step. For
example the current source could be a sinusoidal or a Goussian pulse
function.

4. Absorbing boundary conditions

Since the scatter structure is an open region problem, some method must be
used to truncate and limit the size of spatial region. At the same time, this

absorbing boundary condition (ABC) [7-14] must not produce extractions
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reflections back into the region of interest else it introduces errors in the
solution. Various absorbing boundary conditions have been proposed for
truncation of the FDTD mesh. Sheen, et. Al. [16] utilized a first order Mur
absorbing boundary condition [8jwhich truncates the mesh. To understand
the need for an ABC {7-14] in scattering and radiation problems, consider
the field components are found at the boundaries. These cannot be updated
using the usual FI-TD equations because some of the nearest-neighbor field
components needed to evaluate the finite-difference curl enclosing it are
outside the problem space and not available. The usual basis for ABCs [7-
14]is to estimate the missing field components just outside the problem
space by some means. These typically involves assuming that a locally
plane wave is propagating out of the space, and estimating the fields for the
outward traveling plane wave on the boundary by looking at the fields just
within the boundary. Because in most situations the wave incident on the
outer boundary will not be exactly plane, nor it will be normally incident.
The absorbing boundary will not absorb the wave perfectly. There are many
different schemes for accomplishing this. However, rather than provide the
theoretical basis for ABC conditions, a popular and easily applied [8,17], or
more particularly first or second Mur, depending on the order of
approximating used to estimate the field on the boundary. A first order
condition looks back one step in time and into space one cell location, a
second order condition looks back two steps in time and inward two cell
locations.

Consider that we are at the limit of x =0 of our FD-TD computational space.
We decide that on this plane, we locate E, and E,, fields components. Using
these field components we can evaluate the finite difference curl equations

in order to update the H, magnetic field component at x = 0. So all nearest-
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neighbor field components will be available for updating the field
components located at x = Ax/2 and beyond (at least to the maximum x
dimension include in the structure space, at which location we must apply a
ABC conditions) [7-14]. However, we can not update the E, , E,
components at x = 0 with the usual FD-TD equations because the magnetic

fields at x=Ax/2are not available. We may update them using Mure
expressions [17]. Let us consider the E, component located at X =0,
y=JAy and z=(k+1/2)Az  the first order Mur [8,17] estimates this
field component as
EMN0, j,k+1/2) = EX(L, j, k+1/2)

N~ Ax

+
ct 4+ Ax

5. Numerical results

(E:+K(L]’k+1/2)—E;(Oa],k“f"l/Z)) 20)

In the following we will treat the problem solved by Yee [1], with its own
specifications, then we will apply the Mur's first order boundary conditions
[16,17], In this example a rectangular conducting is imposed to a TM pulse
propagating to the left along the x-axis, the pulse used is an upper part of a
pure sinusoidal signal with a general mathematical expression given by
(17}

E. (xy.0) = sin[(x —50a+ Cl‘)ﬂ']

8a (21)
0<x~-50a+ct<8a

where a is constant, and ¢ is the light speed in free space. Yee [1]had taken
into account that the boundaries must be far enough from the scatter to

notice the pulse behavior while going forward and backward from the
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scatterer. The interaction due to the boundaries close to the scatter is also
avoided. At the boundaries, Yee [1]placed two kinds of conductors, a pure
magnetic reflector ( conductor ) at y = 0, ¥ = yume and a pure electric

conductor atx =0, x = Xpgy .

Yee[1] used the scatterer dimensions to be 4a x 4o units and discretized the
whole region into equally grids with AX = Ay = /8 and cAt = /16 .

The pulse duration was a units. The whole geometry of the structure is

shown in Fig.2.

Excitation sine pulse propagation to the lefi
e

j=0
=0 =20 =25 =50 =60 =80
Fig. 2 Geometry and boundary conditions of Yee’s problem.
Assuming the current density j =0,E, =E,=0 and 8/0z=0, then Maxwell’s

curl equations for a TM; wave are given as follows:

1
i = — =z 22
ot i oy @2
o7, .

O, (23)
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The approximate FD-TD formulation to the above equations are given by:
HAY2G 41 2k +1/2)=H7 26, j+ 12k +1/2)
+-~»§(Ej(i, JkHU2)~ BN, +Lk+1/2) (25)

HM i +1/2, .k + U 2)=Hy (i +1/2, .k +1/2)

+% [EGLi k) -EG k) O
Z
B, jk+12)= B{G.jk+112)
St( Hy VA G+ V2, k+ 1/ D)~ Hy Vi -1/ 2,,k+1/2) +
27)

e A\ V25, 7-1/2,k+1/2) ~ H'V2 (i j+1/ 2,k +1/2)

The results are shown down in Fig. 3, which is equivalent to those obtained
by Yee {1].
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In order to avoid this problem Mur’s first order boundary condition will be
applied as absorbing boundary. To show that Mur’s first order boundary
condition is a satisfactory and suitable, we let a Gaussian pulse[17], given

mathematically as:
.. . 2
Ez(lsjat) = exp(-y(z~)6’) ) (28)
where 7 and £ are constants, to propagate to the right along the x-axis in
the solution region illustrated in Fig. 4 , where the absorbing boundary

condition (ABC) is placed 1A from a. scatter of size 8Ax8A, (where
A=A/20=3/20=015m), behavior of the pulse at various time steps is

obtained and shown in Fig. 5. All computer codes were written in Fortran.

ABC
Jj=80
H, =
EZ =
=25
ABC| H.: =4 H, =0 ABC
E,=0 E, =0
J=20 :
H,%0
ABC
Jj=0
i=0 =20 =25 =50 =60 =80

Fig. 4 Geometry of a scatterer with sides 84 x 84 located into
the solution region, where boundaries 14 from scatterer
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Gaussian pulse propagation Gaussian puse propagation
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Fig. 5. E, of the TM Gaussian pulse for various time steps, where ABC
is far 1 A from the scaterer

6. Conclusion

A complete review of the finite difference time domain(FD-TD) method
was accomplished. An improved Finite Difference Time Domain approach
for planar scatter structures has been presented. The requirements for
stability are illustrated and applied. A computer program in FORTRAN was
written and successfully implemented to obtain the results. A great
similarity between our results and Yee’s results. However, Yee did not take
into account the infinite nature of the surrounding medium. An illustrated
example is produéed to show how to use Mur's first order boundary
condition. In order to solve an open initial boundary value problem, an
absorbing boundary condition has to be used. For the reliability and ease in
representation, Mur’s first order boundary condition was used. An example
illustrating how to use Mur’s first order boundary condition was introduced.
The proposed approach could be used easily in designing some future

waveguide structures.
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