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Abstract

In this paper we use the point-line geometry of type Dn.k(F) to
construct a binary two-weight code. The first weight of the code
comes from the existance of symlecta of type A3,2 and the second
weight comes from the existence of symplecta of type Dn-k+1,1.
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1. Introducticn

In recent year there has been an increasing interest in finite spaces, and
important applications to practical topics such as coding theory. Many
authors have interested in some type of codes called constant-weight codes,
tables of upper and lower bounds where constructed for the sizes of a given
minimal distances and a given length, see [1-3].

Many papers have taken the algebraic concepts for purpose of obtaining
codes, here we used the geometric means to construct some families of
binaty non-collinear two-weight codes, at the same time there are many
geometries that can be used to construct such codes. In [7] EL-Atrash used
this method by defining the non-linear binary constant-weight code that
arises from the Half-spin geometry Ds s.

A subspace of a point-line geometry I'=(P, L) is a subset X< P such
that any line which has at least two of its incident points in X has all of its
incident points in X. (X) means the intersection over all subspaces
containing X, where X P, Lines incident with mote than two points are
called thick lines, those incident with exactly two points are called thin
lines.

x" means the set of all points in P collinear with X, including x itself. 4
clique of P is a set of points in which every pair of points are collinear. A
partial linear space is a point-line geometry (P, L), in which every pair of
points are incident with at most one line, and all lines have cardinality at
least 2. A point line geometry I'=(P, L) is called singular or (linear) if
every pair of points are incident with a unique line.

The singular rank of a space I' is the maximal number n (possibly o)
for which there exist a chain of distinct subspaces @ %X, « Xic...cX, such
that X; is singular for each i, X#X; , i # j , for example rank(&) =-1,
rank({p})=0 where p is a point and rank(L)=1 where L a line.

In a point-line geometry I'=(P, L), a path of length n is a sequence of
nt+ 1 (Xp, X1,..,Xa) Where, (x;,Xi+1) are collinear, Xy is called the initial point
and x, is called the end point. 4 geodesic from a point x to a point y is a
path of minimal possible length with initial point x and end point y. We
denote this length by dr(x, ¥).

A geometry I' is called connected if and only if for any two of its points
there is a path connecting them. A subset X of P is said o be convex if X
contains all points of all geodesics connecting two points of X.
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A gamma space is a point-line geometry such that for every point-line
pair {p, ), p is collinear with either no point, exactly one point, of all poinis
of I, i.e., prnV is empty, consists of a single point, or 1.

A polar space is a point-line geometry I'=(P, L) satisfying the

Buekenhout-Shult axiom:
For each point-line pair (p, 1) with p not incident with I, p is collinear with
one or all points of I, that is | p*rl| = 1 or else p'>lL Clearly this axiom is
equivalent to saying that p™ is a geometric hyperplane of T" for every point
pe P.

A point-line geometry I'=(P, L) is called @ projective piane if and only
if it satisfies the following conditions:

(1) I 1s a linear space; every two distinct points x, y in P lie exactly on
one line,

(i1) every two lines intersect in one point,

(ii1) there are four points no three of them are on a line.

A point-line geometry I'=(P, L) is called @ projective space if the

following conditions are satisfied:

(1) every two points lie exactly on one line ,

(i) if Iy, L, are two lines [inl# &, then {/1, &) is a projective plane.
({{1,2) means the smallest subspace of I" containing /y and 5.)

A point-line geometry I'=(P, L) is called a parapolar space if and only

if it satisfies the following properties:

(i) T is a connected gamma space,

(ii) for every line /; I* s not a singular subspace,

(iit) for every pair of non-collinear points x, y; x*Ny" is either empty, a
single point, or a non-degenerate polar space of rank at least 2.

If %, y are distinct points in P, and if | x'ry* =1, then (x, y) is called a
special pair, and if xrytisa polar space, then (x, y) is called & polar pair
(or a symplectic pair). A parapolar space is called a sirong parapolar space
if it has no special pairs

3- Construction of Dyx (F) [10]. Consider the polar space A=Q'(2n, F)
that comes from a vector space V of dimension 2n over a finite field
F=GF(g) with a symmetric hyperbolic bilinear form B. 8 is the set of all
totally isotropic i-dimensional subspaces of V,; 1<i<n-2. The two classes
My, M consist of maximal totally isotropic n-dimensional subspaces. Two
n-spaces fall in the same class if their intersection is of odd dimension.
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The geometry of type Dy, \(F) is the point-line geometry (P, L), whose
set of points P is the collection of all k-dimensional subspaces of the vector
space V, and whose lines are the pairs (A, B) where A is (k-1)-dimensional
subspace of (k+1)-subspace B—that is, the set of (k-1, k+1)-subspace of V.,
A point C is incident with a line (A, B) if and only if AcCcB as a
subspaces of V.

To define the collinearity, let C; and C, be two point (the points are the
T.I k-spaces), then C; is collinear to C; if and only if the intersection of
CinCy=(k-1)-space and (C;, Cz)=(k+1)-space.

The elements of the classes G, and G, are Grassmannian geometries of
type An—l,k' '

There are two kinds of symlecta (1) The first kind is the convex polar
spaces As that represent the (k-2, k+2) subspaces of V. Then symplecton S
of kind A3, is the set of TI k-dimensional spaces that contain the TI (k-2)-
dimensional space and contained in the TI (k+2)-dimensional space. (2)
The second kind of symplecta is the convex polar spaces of type Dye11 that
represent the collection of all TI (k-1)-subspaces of V. Thus this kind of
symplecta is defined as the collection of all TI k-subspaces of V that contain
such TI (k-1)-spaces.



Two-weight code. .. 49

The properties and their proofs of the geometry that will be mentioned
below can be straightforward obtained from [10]

3.1 Proposition. Let T=(P, L) be the geometry of type Dn(F). Thus:
i- U is of diameter k+1,.
ii- I" is parapolar geomefry.

3.2. Proposition [10]. Let T=(P, L) be the geometry of type Dy \(F) for any
field ¥. Then the following hold:

1- If 8| and S; are tow symplecta of type As s, then rank(85;MS; )=-1, 0,
2.

2-If S; and S are two symplecta of type Dpy+11, then rank($:nS; )=-1,
0.

3- If (p, S) is a non-incident pair of point and symplecta of type Asp,
then p‘Lr\S is empty or projective plane. If a symplecton S is of type D
w11, then prNS is empty or a line.

4- Finite classical polar spaces
For more details about the finite classical polar space, see {5] and
[9]. Let V be a vector space over a finite field F=GF(q), q is a prime
ower.
1- Symplectic Geometry Wy(q) is the point-line geometry (P, L), whf.l;e Pis
the set of all 1-dimensional subspaces (x) of V for which B(x, x)=0, and L is
the set of all 2-dimensional subspaces (x, yy for which B(x, y)_() for a
symplectic bilinear form B. In this case n is even, the polar space is of rank
n/2.
2- Hypebolic Geomelry Q'(n, q) is the point-line geometry (P, L), where P
is the set of all 1-dimensional subspaces (x) of V for which B(x, x)=0, and L
is the set of all 2-dimensional (x, y) for which B(x, y)=0, for a hyperbolic
bilinear form B. In this case n is even, the polar space is of rank n/2.
3- Elliptic Geometry C¥(n, q) is the point-line geometry (P, L), where P is
the set of all 1-dimensional subspaces (x) of V for which B(x, x)=0, and L is
the set of all 2-dimensional (x, y) for which B(x, y)=0, for elliptic bilinear
form B.n In this case n is even, the polar space is of rank (n/2)-1.
4~ Orthogonal Geometry C)(n, q) is the point-line geometry (P, L), where P
is the set of all 1-dimensional subspaces {x) of V for which B(x, x)=0, and L
is the set of all 2-dimensional (x, y) for which B(x, y)=0, for orthogonal
bilinear form B. In this case n is odd, the polar space is of rank n/2.
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5- Hermitian Geome'try H'o(q%) is the point-line geometry (P, L), where P is
the set of all 1-dimensional subspaces (x) of V for which B(x, x)=0, and L is
the set of all 2-dimensional (x, y) for which B(x, y)=0, for a Hermitian
bilinear form B. In this case n is odd, the polar space is of rank (n-1)/2.
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4.1 Theorem.[9,6]. The numbers of points of the finite classical polar
spaces are given by the following formulae:

[Wan(Q)| = (q""-1)Ag-1),
10(2n+1,9)| = (g™ 1)/(g-1),
1Q°(2n,q)| = (q"+1)(g"™1)/(q-1),
' (2n,9)] = (q"-1)q"+1)/(g-1),
[H'(2n,4)| = ("1™ 1) 1).

4.2 Theorem.[6,9]. The numbers of maximal totally singular subspaces of
the finite classical polar spaces are given by the following formulae:

((Wan(Q))| =(q+1)(g*+1) ... (g¥*+1),
Z(Q2n+1,9))| =g+ (1) ... (q"+1),
[Z(©Q o)l =AqHIXG 1) ... (q"+1),
2 (20,9))] =)+ .. (g™+1),
Z(H 2n,g)] =(q+1)(q*+1) ... (q"+1).

4.3 Proposition [5]. The number of subspaces of dimension k in a vector
space of dimension n over GF(q) is

@-D(@9 ... ("""

@-DET @)
Proof. This is the proof of Proposition 1.4.1 in [5].

Remark. This number is called a Gaussian coefficient, and is denoted by

n

kl
4.4. Theorem [4]. Le[ be equipped with a bilinear form then the number
of Totally isotropic &-subspaces is the following:

in the symplectic case W(2n,q)

n| &
[ k] [T@" +p
q

f=0
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M ] k-t
7 (g"" +1) in the orthogonal case O(2n+1,9).
k j_ é\ e

L g 1=

_n— k-l : . . +
‘ (¢""' +1) inthe hyperbolic case Q'(2n,q).

L™ g i=0

IFI=

(¢""'+1) inthe elliptic case Q' (2n+2.q).

Proof. see {4].

4.5 Corollary. Let (P, L) be the point-line geometry Dy (F), F=GF(q) is a
field, then the number of the Grassmannians of type An. k of the classes Gy
and G is [Z(Q"n,g)=2(q+ 1P+ (g™+1).

5- Construction of the code

In this section we shall construct a binary two-weight code that is
arising from the geometry Dy (F). (For more detailed about the definitions
in this section see [8]

4 code C of length n and size M over a field F is just a subset of F” of
cardinality M, then we say that C is (n, M)-code.

Thus each code consists of “codwords” (vectors in F") and the number
of codwords is the size of the code,

The Hamming wieght of u=(x,, %2, ..., X,) is the number of non-zero
coordinates x;, i=1, 2, ..., n, it is denoted by wy(u).

Let C be a code of length n and u, v be two codewords. The hamming
distance between u and v, dy(u, v), is the number of coordinate in which
they differ, that is dy(u,v)=wy(utv). If d= minimum {dp(u,v)u, veC, uzv };
d is called the minimum distance of C, in this case we say that C is (n, M,
d)-code. If C is a linear vector subspace of ¥, then C is called a linear code
and if the dimension of C is k; we say that C is [n, k, d]-code. If all
codewords in C have the same hamming weight w then C is called a
contant-wieght code. An (n, M, d, w)-code is a constant-weight (n, M, d)-
code with w as the common weight of all codewords. If the code C have
two weights w) and ws, then C is called a two-weight code (n, M, d, wy,
Wg).

5.1. Theorem. Let Pts P2,.--,Ps be the set of all points in I'=D, «(F). Let S,
S2,-..,3t be the set of all symplecta in T" of types Dyisyy and Azp. Let
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G=(g;) be the incidence matrix, where giz=1 if the point p; is incident with
the symlecton S; and giz=0 otherwise. Then the rows of G represent a non-
linear binary two-weight code of parameters (n, M, d, w;, wa), where

n| &l :
] foeo

n 2 i kot i
M-:[kuj H(q e+ [ 2LQ(Q YN

=0

wi=2(q+1)(q’ D). .<q"“‘*‘-1),

W= [k + 2] H( k»-r-i»E

q i=0

d=2(q"+1)(q-1)g-1)- 2{ } [T +v.
¢ i={
Proof. Since there are two kinds of symplecta and each of them has
different cardinality of 1’s, then we have two-weight code. The number of
columns of G is the number of distinct points, that are corresponding to the

k-1
number of TI k-subspaces of V, then by Theorem 4.4 n-{;j [T +1
i

The number of rows of G is the number of distinct symplecta, then M= the
number of symplecta of type Dy.x+1,1+ the number of symplecta of type Az .
So, the number of D,,. k+1 1 corresponds to the number of TI (k-1)-subspaces

of V, that is: {;: li] H(q"' ! +1) and the number of A3, corresponds to

q =0
k+1

n
th ber of TI (k+2)-sub TV that is: (S| T
e number of TI (k+2)-subspaces o at is [k+2] [T@ " +1). Thus

4 i={)

K+l ‘
M_{k I:l H(qn—-r 1+1)+!: ] H( n-1~l

g =0 i=()
The number of points in the symplecton of type Dy is the weight wy,
thus by Theorem 4.1:
wi=IQ"Q(-ke+), Q= 2g+)(@+D)... (1),
and w; is the number of points of symplecta of type Aj,, that is the number
of k-spaces in a (k+2)-space Then by Theorem 4.3:
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k-1

w;;,=[k * ﬂ (@ +1).
LI )

Two rows of G have 1 in the j* column if the points p; is incident with both

symplecta.  Since, by Proposition 3.2, two symplecta intersect in a

projective plane, a point or disjoint, it follows that the corresponding two

rows differ in at least | Sll + SzJ 2 SmSﬂ positions. The least of these

numbers is when the two symplecta intersect in a projective plane, it follows
that the distance is:

d=2 min{wy, w,}-2max| $,184,
that is:
5 3 k+1] &=,
d$2(q+i)(q—1)/(q~1)~2k [T +1). o

g i=0
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