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ABSTRACT 
 
Let Q0,  Q1,…, Qn be a family of n+1 quads in parapolar space 

that satisfies the following: 
For each point x in a quad Qi, we have x⊥∩Qj is a single point, i 
≠ j. 
Let x0 be a point in Q0 then there is a point x1 ∈ Q1, with x1= x0

⊥ 
∩ Q1, define by induction xi+1 = xi

⊥ ∩ Qi+1, i = 0, 1, …, n, 
(indices are taken modulo n). To encipher we match x0, to xn+1, 
and to decipher we go back from xn+1 to x1 using the 
corresponding quad. 
One geometry that satisfies the rule is the residue of 

metasymplectic space (a dual polar space). In this work we 
construct the dual polar space and explain how to make up the 
cipher system using this geometry.  
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INTRODUCTION: 

Ciphering has existed for thousands of years. One of the first known uses 
in about 1900 BC. An Egyptian scribe used non-standard hieroglyphs while 
inscribing. Simple substitutions by scribes in Mesopotamia dating about 
1500 BC were discovered long time ago. Writing was a safe means of 
communication because few people could read. Julius Caesar used simple 
substitutions by shifting letters in the alphabet, off setting (or shifting) 3-
letters. But now, in the era of information technology. One of the means to 
protect information from any person is to encipher this information. Many 
authors have written many papers about information and computer security, 
by using various methods of algebra. This is one to add to the literature in 
this field. What is special about this paper is the use of geometric properties 
instead of algebraic ones to implement the cipher system. This paper is 
meant to be self-contained. Some of the material contained here can be 
found in other sources. The geometric properties that we will use can be 
derived from the algebraic structure. For more information about the 
metasymplectic space see [Uzal], [Co] [JT] [CC]. 

2.1 Basic geometry Definitions:  

Given a set I, a geometry Γ over I is an ordered triple Γ = (X, *, D), where 
X is a non-empty set, D is a partition {Xi} of X indexed by I. Xi are called 
components, and it satisfies the following condition: 

x * y implies that either x and y belong to distinct components of X or x = y. 
Elements of X are called objects of geometry, and the objects within one 
component Xi of the partition are called the object of type i. The subscripts, 
which index the components, are called types. The obvious mapping τ : X 
→ I that takes each object to the index of the component of the partition 
containing it is called the type map τ. 

A point-line geometry Γ = (P, L) is a pair of sets, P is called the set of 
“points” and L is called the set of “lines”, where members of L are just 
subsets of P. If p is a point belongs to a line l we say that p lies on l or l 
passes through p or p is incident with l. If p, q are two points on one line l 
we say that p and q are collinear and this is denoted by p ∼ q. Γ = (P, L) is 
called linear (singular) space if each pair of distinct points lie exactly on 
one line. Γ is called partial (or near) linear if each pair of points lie on at 
most one line. A subspace of a point-line geometry Γ = (P, L) is a subset X 
of points together with all lines l in L such that if l has at least two points of 
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X then l lies entirely in X. A path of length k from x0 to xk is a set of k +1 
points x0, x1, x2,  ..., xk , such that xi is collinear with xi+1, i = 1, 2, 3, ..., k-1. 
A geodesic is a shortest path between two points.  We define the distance 
function d: P × P → Z+ (non-negative integers) by d(x, y) = the length of 
any geodesic from x to y. A subspace X is called convex if it contains all 
geodesics between any two points of X.  The smallest subspace containing a 
set X is called the subspace generated by X and is denoted by 〈X〉. If p is a 
point, p⊥ means all point collinear with p in addition to p itself.  ∆k(p) = {x 
∈ P | x is at distance k from p}.  ∆*

k(p) = {x ∈ P | x is of  distance at most k 
from p}. Let Γ be point-line geometry. A geometric hyperplane of Γ is a 
proper subspace with the property that every line of Γ meets it in at least one 
point. A hyperplane of Γ is a maximal proper subspace of Γ. 

2.2 Some basic space 

Γ = (P, L) is called a gamma space if x⊥ is a subspace for every point x∈ P .  

A polar space is a point-line geometry that satisfies the following 
Buekenhout- Shult axiom: 
(B-S) For each point p not incident with a line l; p is collinear with one or 
all points of l. 
If Γ = (P, L) is a point-line geometry; Rad(Γ) = { q ∈ P | p collinear to q for 
all  p∈ P}.  Rank of  Γ is the largest integer n for which there is a chain of 
singular subspaces {Xi}, i = 1, 2, ..., n. such that: 
X1 ⊂ X2 ⊂ ... ⊂ Xn, where Xi ≠  Xj , i ≠ j. 
If there is no such integer; the rank of Γ is infinite. If  Γ is a polar space and 
Rad(Γ) = ∅, then  Γ is called non-degenerate polar space; otherwise Γ  is 
called degenerate polar space.  A point-line geometry is called a parapolar 
space of rank r + 1, r ≥ 2; if it satisfies the following conditions: 
(PP1) Γ is a connected gamma space. 
(PP2) for every line l;  l⊥ is not a singular space. 
(PP3) for every pair of distinct points x, y; x⊥∩y⊥ is either empty, a point, or 
a non-degenerate polar space of rank r. 
A strong parapolar space is a parapolar space in which x⊥∩y⊥ is a polar 
space for every pair of points distinct x, y of distance 2 apart.  
If x, y are two points of a parapolar space; (x, y) is called a special pair if 
x⊥∩y⊥ is just one point, and (x, y) is called a polar pair if x⊥∩y⊥ is a non-
degenerate polar space of rank at least 2. 
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Let p be a point in a point-line geometry Γ = (P, L); Residue of Γ at p 
denoted by Γp or Res(p);  is a point-line geometry (Pp, Lp) defined as 
follows: Pp is the set of  all lines containing p; a member of Lp is the set of 
all lines containing p and contained in a plane (singular space of rank 3). 
 
2.3 Definition: 
 (Metasymplectic space). A metasymplectic space is a set P in which some 
subsets called lines, planes, and symplecta are distinguished, and satisfy the 
following axioms: 
(M1) the intersection of distinct symplecta is empty, a point, a line, or a 
plane. 
(M2) A symplecton S together with its “singular spaces”; points, lines, and 
planes contained in S is a polar space of rank 3. 

(M3) Considering the set x* of all symplecta containing a given point x ∈ P, 
and calling lines (resp. Planes) of x*. The subset of x* consists of all 
symplecta of x* containing a plane (resp. a line) through x, we obtain a 
polar space of rank 3. 

2.4 Basic Algebraic Definitions and Notations:    

Let V be a vector space of finite dimension n over an arbitrary field F.  

A bilinear form B on V is a mapping  
B: V ×V → F, such that for α, β ∈ F; x, y, z ∈ V we have : 
B(αx + βy, z) = αB(x, z) + βB(y, z). 
B(z, αx + βy) = αB(z, x) + βB(z, y) 
Thus a bilinear form is a linear functional in each of this coordinate. 
If  B = {e1, e2,…, en} is a finite basis for a finite-dimensional vector space 
V, and if B is a bilinear form on V, the matrix of B relative to the ordered 
basis B is the n×n matrix with entries bij = b(ei, ej). We shall denote this by 
[B]B and is called the grammian matrix of B, relative to B. 
For a subspace W of V; we set  
W⊥

L = {u ∈ V: B(u, v) = 0, for all vector v ∈ V} 
W⊥

R = {u ∈ V: B(v, u) = 0, for all vector v ∈ V} 
W⊥

L , W⊥
R are called left and right radicals respectively of W with respect to 

B. 
A bilinear form B is called symmetric if B(u, v) = B(v, u) for all vector u, v 
∈ V. A bilinear form B is called alternate form iff B(u, u) = 0 , u ∈ V. B is 
called a skew-symmetric form if B(u, v) = - B(v, u) for every u, v ∈ V. 
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Let B be a symmetric or alternate bilinear form defined on a vector space V 
over an arbitrary field F. For (a subspace) W ⊂ V; we set  
W⊥= {u ∈ V: B (u, v) = 0, for all vectors v∈V}. V⊥ is called radical of V 
with respect to B.  A bilinear form B on a vector space V is called non-
degenerate iff V⊥ = {0}.  Otherwise B is called degenerate. 
Two forms B1, B2 on V are said to be equivalent if there is a one-to-one and 
onto linear transformation ψ : V→V such that:B1(u, v) = B2(ψ(u), ψ(v)). 
A vector u ∈ V is called an isotropic vector, if B(u, u) = 0,  and a subspace 

W of V  is called totally isotropic (abbreviated TI) subspace of  V  if B(u, v) 
= 0 for all u, v ∈ W.  If a TI subspace W of V is not contained properly in 
any TI subspace of V; W is called maximal totally isotropic (abbreviated 
MTI) subspace of V.  
It can be shown (see Bierbrauer (1997)) that all the MTI subspaces have 

the same dimension it is called witt index of V and is denoted by ind(V). 
Two vectors u, v are called orthogonal if B(u, v) = 0. 
A 2-dimensional vector space with non-degenerate bilinear form B, in 
which there is an isotropic vector u is called a hyperbolic plane, otherwise 
it is called anisotropic plane. 
A vector space V of dimension 2n is called hyperbolic if V is endowed 

with a symmetric bilinear form of witt index n, and is called elliptic if witt 
index is n –1. 
The following two Theorems explain the structure of vector spaces 

endowed with bilinear forms. [see Bierbrauer (1997)]. 
2.4.1 Theorem [Bj]: 
  Let B be a non-degenerate symmetric bilinear form on a vector space V of 
dimension 2n over a finite field F.  Then B is a hyperbolic form on V iff V 
has a basis A, such that V = H1 ⊥ H2 ⊥ … ⊥ Hn, where all Hi are hyperbolic 
planes, i = 1, 2, …, n with ind(V) = n. 
It shows that all hyperbolic non-degenerate symmetric bilinear forms on a 
certain vector space are equivalent.  
2.4.2  Theorem: [Bj]: 
 For n = 2r, r odd integer, let ( , ) be the Euclidean scalar on a vector space 
of dimension n over the finite field of odd order k. Then 
(i)   ( , ) is a hyperbolic form iff k = 1 (mod4) 
(ii)   ( , ) is an elliptic form iff k = 3 (mod4) 
And for n = 2r, r even integer, or q is even ( , ) is always a hyperbolic form. 
3.1 Dual polar spaces [CC] 
From the definition of the Metasymplectic space the residue of 
Metasymplectic space at any point is dual polar space (C3). 
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The dual polar space is the space whose point are maximal singular spaces 
of classical polar space of rank at least two, line are all totally singular 
subspaces of dimension one less than the dimension of a maximal singular 
space. All symplecta of these geometries are generalized quadrangles 
(Quads) [Uzal] 
(p) : In a parapolar space Γ = (P, L), if x0, x1,x2, x3, x4, are five points 
in P, we say that (x0, x1, x2, x3, x4) is a pentagon if xi is collinear 
with xi+1. We say that (x0, x1, x2, x3, x4) is a pentagon with no 
diagonals, if   (x0, x1, x2, x3, x4) is a pentagon such that xi is neither 
collinear with xi+2 nor to xi+3, i = 0, 1, 2, 3, 4 (indices are taken mod. 
5). We say that Γ satisfy pentagon property, (p) If x0, x1, x2, x3, x4 are five 
points in a parapolar space Γ = (P, L), with no diagonals then xi is collinear 
to one point on the line xi+2xi+3 (indices are taken modulo 5). 
3.2 Lemma: [CC]: 
 Let Γ (P, L) dual polar space, of rank 3 the following holds. 
(a) Γ is a gamma space whose lines are maximal cliques 
(b)  (P) holds. 
(c)  Each pair of points at mutual distance 2 is contained in a unique quad. 
(d) Each pair of quads has either empty intersection or meets in a line. 
(e) For any point x ∉ Q ⇒ x⊥∩Q = ∅ or one point. 
(f) The diameter of Γ is 3. 
Note: This lemma is true for the dual polar space that comes from thick 
polar space of rank 3. 
4.1EXAMPLES OF FINITE CLASSICAL POLAR SPACES:[JT] 
Let V be a vector space over a finite field F = GF(q), q is a prime 
power. 
Symplectic Geometry: 
 Wn(q) is the point-line geometry (P, L), where P is the set of all one 
dimensional subspaces 〈x〉 of V, and L is the set of all two 
dimensional subspaces 〈x, y〉 for which B(x, y) = 0, for a symplectic 
bilinear form B. In this case n is even, the polar space is of rank n/2. 
Hyperbolic Geometry: 
 Ω+

n(q) is the point-line geometry (P, L), where P is the set of all one 
dimensional subspaces 〈x〉 of V for which B(x, x) = 0, and L is the 
set of all two dimensional subspaces 〈x, y〉 for which 
 B(x, y) = 0, for a hyperbolic bilinear form B. In this case n is even, 
the polar space is of rank n/2. 
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Elliptic Geometry: 
 Ω-

n(q) is the point-line geometry (P, L), where P is the set of all one 
dimensional subspaces 〈x〉 of V for which B(x, x) = 0, and L is the 
set of all two dimensional subspaces 〈x, y〉 for which B(x, y) = 0, for 
a elliptic bilinear form B. In this case n is even, the polar space is of 
rank (n/2) - 1. 
ORTHOGONAL GEOMETRY: 
 Ωn(q) is the point-line geometry  (P, L), where P is the set of all one 
dimensional subspaces 〈x〉 of V for which B(x, x) = 0, and L is the 
set of all two dimensional subspaces 〈x, y〉 for which B(x, y) = 0, for 
an orthogonal bilinear form B. In this case n is odd, the polar space 
is of rank (n-1)/2. 
Hermitian Geometry: 
 H+

n(q2) is the point-line geometry (P, L), where P is the set of all 
one dimensional subspaces 〈x〉 of V for which B(x, x) = 0, and L is 
the set of all two dimensional subspaces 〈x, y〉 for which B(x, y) = 0, 
for a Hermitian bilinear form B. In this case n is even, the polar 
space is of rank n/2. 
Hermitian Geometry: 
 H-

n(q2) is the point-line geometry (P, L), where P is the set of all one 
dimensional subspaces 〈x〉 of V for which B(x, x) = 0, and L is the 
set of all two dimensional subspaces 〈x, y〉 for which B(x, y) = 0, for 
a Hermitian bilinear form B. In this case n is odd, the polar space is 
of rank (n-1)/2. 
4.2 Theorem: [Th] 
 The number of points of the finite classical polar spaces are given by the 
following formulae: 
⏐W2n(q)⏐= (q2n- 1) / (q – 1), 
⏐Ω(2n + 1, q)⏐= (q2n – 1) / (q – 1), 
⏐Ω+(2n, q)⏐= (q2n + 1) (qn – 1) / (q – 1), 
⏐Ω-(2n, q)⏐= (qn-1 - 1) (qn + 1) / (q – 1), 
⏐H-(2n +1, q2)⏐= (q2n+1 + 1) (q2n+1 - 1) / (q2 – 1), 
⏐H+(2n, q2)⏐= (q2n - 1) (qn + 1) / (q2 – 1), 
4.3 Theorem: [Th] 
 The numbers of maximal totally isotropic subspaces or maximal singular 
subspaces of the finite classical polar spaces are given by the following: 
⏐W2n(q)⏐= (q + 1)(q2 + 1)…(q(n+1)/2 +1), 
⏐Ω(2n + 1, q)⏐= (q +1)(q2 +1)…(qn +1) 
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⏐Ω+(2n, q)⏐= 2(q + 1) (q2 – 1) …(qn + 1), 
⏐Ω-(2n, q)⏐= (q2 + 1) (q3 + 1) …(q2n+1 + 1), 
⏐H-(2n +1, q2)⏐= (q3 + 1) (q5 + 1) …(q2n+1 + 1), 
⏐H+(2n, q2)⏐= (q + 1) (q3 + 1) …(q2n+1 + 1), 
 

Table 1. The table below lists the number of point, quad and the 
numbers of points in each quad in dual polar space of rank 3. 

Type # of points # of quad # of points in each 
quads 

W6(q) (q+1)(q2+1)(q3+ 1) (q6 - 1) / (q – 1) (q4 - 1) / (q – 1) 
Ω(7, q) (q +1)(q2+1)(q3+ 1) (q6 - 1) / (q – 1) (q4 - 1) / (q – 1) 
Ω+(6, q) 2(q +1)(q2+1)(q3+ 1) (q2+ 1)(q3-1) / (q – 1) (q+ 1)(q2-1) / (q – 1) 
Ω-(6, q) (q2+1)(q3+1)(q4+ 1) (q2- 1)(q3+1) / (q – 1) (q- 1)(q2+1) / (q – 1) 
H-(7, q2) (q3+1)(q5+1)(q7+ 1) (q7+1)(q7-1) / (q2– 1) (q5+1)(q5-1) / (q2 – 1) 
H+ (6, q2) (q+1)(q3+1)(q5+ 1) (q6 - 1)(q6 +1) / (q2 – 1) (q4 - 1)(q4 +1) / (q2 – 1) 

 
5. Construction of the cipher system: 

5.1 Definition: 
 Two distinct quads are called parallel, if x ∈ Q1⇒ x⊥∩Q2 = one point. Let 
Q0, Q1, Q2 Q3, be four parallel quads in dual polar space C3,3(q),  let p0 be a 
point in Q0 (p0 will be our plaintext). It follows by lemma, that there is a 
point p1∈Q1, with p1 = p0

⊥∩Q1. Define inductively pi+1 = pi
⊥∩Qi , 1 ≤ i ≤ 3, 

p4 = p3
⊥∩Q0 (p4 will be our ciphertext). To decipher we go back from p4 to 

p0 using the corresponding quads in a reverse order. 

 

 

 

 
 
 

P4 

P1 

P0 

P2 

P3 

Q1  

Q2 

Q0  

Q3 



 
 
 
O. Al-Absi et al., J. Al-Aqsa Unv., 10 (S.E) 2006 
 

  

 423

Next, we will discuss several aspects of this crypto system including 
implementation of the system, level of security of the system, complexity of 
the system. 
Clearly, the system is a private key system, in which the sequence of quad 

Q1, Q2 Q3, must be kept secret as the key of the system. 
The message space and the ciphertext space is Q0.  

5.2 Example: 
 Let q = 2, then points of C3,3(2) are totally isotropic 3-space of 7-
dimensional vector space, lines are totally isotropic 2-space and quads are 
totally isotropic 1-spaces. 
So, points can be represented by 3x7, matrix containing as rows the basis 

of totally isotropic space, and a quad is 1-dimension space so it can be 
represented by 1x7 matrix. M. 
It is enough to show how to calculate p1 from p0, Q0 and Q1. In a similar 
fashion we calculate the rest of p2, p3, p4.  
 We know that, both p0, p1 corresponds to two maximal totally isotropic 
3-subspace of a 7-space. It follows that both that can be represented by tow 
3x7 matrices N0, N1 respectively, where rows of Ni represent a basis for pi, i 
= 0, 1. 
 We know also that Q0 corresponds to a totally isotropic 1-space {u0}, and 
Q1 corresponds to a totally isotropic 1-space {u1}. We may assume without 
loss of generality that rows of N0 are {w1, w2, w3}, and rows of N1 are {u1, 
u2, u3}.The line that passing through p0, p1 corresponds to a totally isotropic 
2-space  

X = u1
⊥∩ 〈w1, w2, w3〉. 

It follows that the line p0 p1 corresponds to a totally isotropic 3-space 〈u1, 
X〉. 
To determine X, we need to find a two totally isotropic 2-spaces {u2, u3}. 
This can be achieved by finding a basis of the solution set of the following 
equation  

w.w4 = 0,   (1), 
where w = aw1 + bw2 + cw3. 
Thus, we are looking for two independent solution of the equation (1) that 

can be rewritten as:  
a(w1.u1) + b(w2.u2) + c(w3.u3) = 0.   (2) 
Coefficients of equation (2) are known. 
It follows that the whole system turned out to be finding out 2 solutions of 

a system of equation (2). The solution can be calculated by any method like 
Gauss elimination method. 
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As for the complexity of the system, not much should be said about that, 
since clearly from the computations that this system, is as complex as DES 
system. To break such system it requires the solution of equation in n 
variables of degree 3, which is considered as a hard problem as the DES 
system. In fact we can add that the security level of such system is very 
high, because of huge key space, and the arbitrariness of u1,q. 

For example let 0

1 0 1 0 1 0 1
0 0 1 1 1 1 0
1 1 0 0 1 1 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

p  

Q1 =  (0  0  1  1  1  0  1) = u1 
Now, w = aw1 + bw2 + cw3, 
u1.w =  a (w1.u1) + b (w2.u2) + c (w3.u3) = 0 
= a + b + c = 0 
So let a = 0, b = 1 → c = 1 
 a = 1, b =- 0 → c = 1 
It mean that  u2 =  (0   0   1   1  1   1   0)  +  (1   1  0  0 1  1   0)  =  (1  1  1  1  
0  0 0), 
And  u3 = (1  0  1   0   1   0   1)  +  (1   1  0  0  1  1  0)  =  (0 1 1   0  0  1   1). 

It follows that 1

0 0 1 1 1 0 1
1 1 1 1 0 0 0
0 1 1 0 0 1 1

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

p  

Let Q2 = (1 1 1 0 0 1 0) then 2

1 1 1 0 0 1 0
1 0 0 1 0 1 1
0 1 0 1 1 1 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

p  

Let Q3 = (1 1 0 1  0  1  0) then 3

1 1 0 1 0 1 0
1 1 0 0 1 0 1
1 0 1 1 1 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

p  

Let Q0 = (1 0 1 0  1 0 1) then 4

1 0 1 0 1 0 1
0 1 1 1 0 0 1
0 1 1 0 1 1 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

p  

This point is the ciphertext not equal to point p0, which is plaintext. 
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