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  الملخص

 T0  -المجموعات تمهيد مفتوحة والمجموعات شبه مفتوحة في فضاء"

 "الكساندروف
 - T0سابقا تمت دراسة خواص بعض المجموعـات المفتوحـة المعممـة فـي فـضاء     

مثل المجموعة تمهيد مفتوحة و المجموعـة       ) ACC(الذي يحقق السلسلة الصاعدة   الكساندروف و 

   ..…شبه مفتوحة والمجموعة ألفا مفتوحة 

 الكساندروف سواء يحقـق     T0-ا البحث قمنا بتعميم النتائج السابقة علي أي فضاء          هذفي  

جموعات أخرى  وقمنا أيضا بتطبيق النتائج على م     . أو لا يحققها  ) ACC(خاصية السلسة الصاعدة    

  .في الفضاء
ABSTRACT 

 
Finite topological spaces became much more essential in 

topology،with the development of computer science and the need for digital 
topology. Finite spaces are a subclass of the class of T0-Alexandroff spaces. 
The authors in [8] have studied properties of those finite spaces. 

Elatrash and Mahdi in [9] have studied the properties of a more 
general class of spaces than finite spaces yet is a subclass of T0-Alexandroff 
spaces whose corresponding poset satisfies the ascending chain condition 
(ACC). They have introduced a characterization of basic notions of open 
sets, such as preopen, semiopen, and alpha open set. 

In the current paper we introduce notations, elementary facts and 
characterizations of notions of near openness along some of their properties 
in  the class of T0 Alexandroff spaces (Posets). We also apply the main 
results to some classes of spaces. 
 
Kay words: T0-Alexandroff space, preopen sets, semi-open sets, 
regular-open sets, α-open sets. 
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INTRODUCTION: 

An Alexandroff space X is a topological space in which arbitrary 
intersection of open sets is open or equivalently، arbitrary union of closed 
sets is closed. The class of Alexandroff spaces includes two important 
classes beside others namely; the class of locally finite spaces which in turn 
includes the class of all finite topological spaces.  

Alexandroff spaces were first introduced in 1937 by Russian 
Mathematician  P. S. Alexandrov under the name discrete spaces in [1] 
where he provided the characterizations in terms of sets and neighborhoods 
[17] .  
The name discrete spaces later came to be used for topological spaces in 

which every subset is open and the original concept lay forgotten. 
  With the advancement of categorical topology in the 1980s، Alexandroff 
spaces were rediscovered when the concept of finite generation was applied 
to general topology and the name finitely generated spaces was adopted for 
them. Alexandroff spaces were also rediscovered around the same time in 
the context of topologies resulting from denotational semantics and domain 
theory in computer science. 
 In [14], M.C. McCord had observed that there was a duality between 

partially ordered sets and spaces which were precisely the T0 versions of the 
spaces that Alexandroff had introduced. P Johnstone referred to such 
topologies as Alexandroff topologies in [11]. 
In [2], F. G. Arenas independently proposed this name for the general 

version of these topologies. It was also a well-known result in the field of 
modal logic that a duality exists between finite topological spaces and 
preorders on finite sets (the finite modal frames for the modal logic S4).  
In [15], C. Naturman extended these results to a duality between 

Alexandroff spaces and preorders in general, providing the preorder 
characterizations as well as the interior and closure algebraic 
characterizations. A systematic investigation of these spaces from the point 
of view of general topology which had been neglected since the original 
paper by Alexandroff, was taken up by F.G. Arenas in [2]. 
Inspired by the use of Alexandroff topologies in computer science، applied 
mathematicians and physicists in the late 1990's began investigating the 
Alexandroff topology corresponding to causal sets which arise from a 
preorder defined on spacetime modeling causality. 



 
 
 
 
M. Elatrash et al., J. Al-Aqsa Unv., 10 (S.E) 2006 

  

 398

The main example of an Alexandroff space is the poset (P, ≤) where B = 
{↑x : x ∈ P} is a basis for the topology. This topology - denoted by τ (≤) – 
is a T0 Alexandroff space.  Conversely, if (X, τ)  is an Alexandroff space, we 
may define a partial order (called the Alexandroff  specialization order)  ≤τ 
on X  by setting a ≤τ b  if }{ba ∈ . 
 The specialization order is reflexive and transitive. It turns out that it is 

antisymmetric  - and hence partial order - if and only if  X is T0. Moreover, 
if (X, ≤) is a poset and if  τ(≤) is its induced T0- Alexandroff topology, then 
the specialization order of τ(≤) is the order ≤ itself, i.e. ≤τ(≤) = ≤. On the 
other hand, if (X, τ) is a T0 Alexandroff space with specialization order ≤τ 
then the induced topology by the specialization order is the original 
topology, i.e. τ(≤τ) = τ  [2] . Therefore, T0- Alexandroff   spaces can be 
completely determined by their specialization orders.  
We say that a poset (X, ≤) satisfies the ascending chain condition in short 

(ACC) if for every nondecreasing sequence x1 ≤ x2 ≤…≤ xi ≤ … in X  there 
exists n such that xn =  xn+1 = …. . A T0- Alexandroff space whose 
corresponding poset satisfies the (ACC) is called  Artinian T0-  Alexandroff 
space. It is known that the (ACC) is equivalent to the maximal condition 
(MXC); namely, every subset of a poset has a maximal element. In a 
similar way we define the descending chain condition (DCC) and also, it is 
known that (DCC) is equivalent to the minimal condition (MNC) namely, 
Every non-empty subset has a minimal element. The T0- Alexandroff space 
in which the (DCC) holds is called Noetherian T0 -  Alexandroff  space. If 
both (ACC) and (DCC) hold then the  T0- Alexandroff space will satisfy 
the finite chain condition  denoted by (FCC). Finite topological spaces are 
locally finite spaces, and locally finite spaces are Artinian T0- Alexandroff 
spaces. 
In 1961, Levine in [12] introduced the notion of a semi-open set in any 

topological space. A subset A in a topological space X is called semi-open if 
and only if AntiA ⊂ . In 1982, Mashhour et. al. [13] defined the concept of 
a preopen set. A subset  A  is preopen in  X  if and only if AA int⊂ . There 
are no implications between these two concepts. This means that semi-open 
sets need not be preopen and vice verca. In a finite topological space X, 
every preopen set in X is semi-open. The converse may not be true. In fact, 
preopen sets in X are semi-open sets in a larger class of T0-Alexandroff 
spaces that satisfy the (ACC). However, in a general T0 - Alexandroff spaces 
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preopen sets may not be semi-open sets. The authors in  [8]  have studied 
properties of finite spaces.  
Elatrash and Mahdi in [9] have studied the properties of a more general 

class of spaces than finite spaces yet is a subclass of T0- Alexandroff spaces 
whose corresponding poset satisfies the ascending chain condition (ACC). 
They have introduced a characterization of basic notions of near open sets, 
such as preopen,  semiopen, and alpha open sets. 
Here, we characterize preopen, semiopen, α-open sets in the general case 

of a T0 - Alexandroff space, i.e., in any poset. 
Notation: 
Let A be subset of a T0 - Alexandroff space (X, τ) and  x  ∈ X. 

cA = complement of A. 
}:{ xyXyx ≥∈=↑  

},:{ AxxyXyA ∈∀≥∈=↑  
}:{ xyXyx ≤∈=↓  

},:{ AxxyXyA ∈∀≤∈=↓  
If (X, τ)  satisfies the (ACC) then: 
M    = the set of maximal elements in X. 
M(A) =  the set of maximal elements in A. 

.ˆ Mxx ∩↑=  
.ˆ MAA ∩↑=  

        = The maximum element of  X  if any. 
And  if (X, τ)  satisfies the (DCC) then: 
m    =   the set of minimal elements in X. 
m(A) =  the set of minimal elements in A. 

.mxx ∩↓=(  
.mAA ∩↓=

(
 

⊥ =  The minimum element of  X  if any.  

 

 

Definitions and elementary results: 
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Definition 2.1   A subset A of a space (X, τ) is called: 

(1) a semi-open set  if  oAA ⊆ , and is called a semi-closed set if cA  is 
semi-open. If A is both semi-open and semi-closed, A is called semi-regular. 

(2) a preopen set if 
o

AA ⊆ and is called  a preclosed set if  cA  is preopen, 

(3) an α-open set if 
o

oAA ⊆ and is called an α-closed set if cA  is α-open.  

(4) a regular open set if 
o

AA = , and is called a regular closed set if cA is 
regular open. 

(5) a semi- preopen set if
o

AA ⊆  , and is called a semi- preclosed set if 
cA is semi- preopen.  

It follows from the above definitions that: 

• A  is a semi-closed if and only if AA ⊆
o

, 

• A  is a preclosed if and only if  AA ⊆o  

• A  is an α-closed if and only if AA ⊆
o

  

• A  is a semi- preclosed if and only if AA ⊆
o

o . 
If A is "semi-closed and semi-open" (resp. "preclosed and preopen",  "α-

closed and α-open")  then A is called semi-clopen (resp. preclopen, α-
clopen) 
In what follows, by X we always mean a topological space (X، τ). For each  
A ⊂ X, the closure (resp. interior، exterior, boundary) of A will be denoted 

by A  (resp. int (A) or oA ,  ext (A), ∂ A). 
The set of all preopen sets of a space (X, τ) is denoted by PO(X, τ). The α- 
closure [ resp. semi-closure, preclosure, semi-preclosure] of A ⊆  X  is 
denoted by α- cl(A) [ resp. scl(A), pcl(A), spcl(A)] is the smallest α- closed 
[resp. semi-closed, preclosed, semi-preclosed] set containing A. A point x ∈ 
X is called a θ-closure point of A if A ∩ cl(V)  ≠ φ   for every open set V 
containg x, the set of all θ - closure points of A is called  θ - closure of A and 
is denoted by clθ (A). 
Definition  2.2. A space (X, τ)  is called Alexandroff  space if the 
intersection of arbitrary family of open sets is open, or equivalently, the 
union of arbitrary family of closed sets is closed. 
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Definition 2.3.  A space (X, τ) is called a locally finite space if every point x 
∈ X  has a neighborhood that meets only finitely many open sets.  
It follows that in an Alexandroff space X, for each point x، there is a 

smallest neighborhood which is contained in each other neighborhood of x. 
For each x ∈ X, let Ux = I } x containingset open an  is V :{V  
Clearly Ux  is the smallest open set containing x since X is an Alexandroff 
space. 
It is clear that all finite spaces are locally finite and all locally finite spaces 
are Alexandroff.  
Finite spaces  ⇒  Locally finite spaces   ⇒  Alexandroff spaces 
Lemma 2.4. The class U = {Ux: x ∈ X} is a base for a finite space (X, τ). 
Each base for τ contains U. 
Notice that if  X  is an Alexandroff space, then  X  is T1 if and only if  Ux =  
{x}. It follows that X  is discrete and so every point is an isolated point. 
Remark  2.5.  Observe that if x and  y are two points in a space X, then y ∈ 
Ux  if and only if Uy ⊆Ux 
Definition 2.6.  [14]. In a T0 - Alexandroff  space, for two points   x,  y  ∈ X, 
x  ≤  y  if Uy  ⊆  Ux. 
We will write  y ≥ x to mean x  ≤  y It follows from  2.5 that Ux = {y ∈ X: y 
≥ x}. Let us write ↑x  for  Ux. 
Remark  2.7.  From Definition 2.6,  the relation  ≤  is reflexive and 
transitive since ⊆ is so. 

Proposition  2.8.  In a space X, x ≤ y if and only if }{yx ∈ . 
Proof.  Let x  ≤  y  and  x  ≠  y. Then y ∈ Ux which is the smallest open set 
containing x. Then for any open set G containing x، we have (G \{x}) ∩{y} 

≠  φ.  This means x is an accumulation point of y. Therefore }{yx ∈ . 
Conversely, let }{yx ∈  then φ≠∩ }{yG  for every open sets G containing 
x. So y ∈ G for every open set G. Take G = Ux. By Remark 2.5, we get Uy ⊆ 
Ux. This shows that x ≤ y.    
Proposition  2.9.  Let  (X, τ) be a T0- Alexandroff space, and let A ⊆ X. 
Then the following hold: 

(1)  For x  ∈ X, xx ↓=}{ . 
(2) }:{}:{ AxxAxAxA ⊆↑↑∪=⊆↑∈=o  
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(3) }:{ AxxA ∈↓∪= . 
(4) }:{ yxwithAyAxA <∈∃∈=′  
Proof.   (1)  It is straight forward By Proposition 2.8. 
 (2)  By definition oAx ∈  iff  there exists an open set U such that x ∈ U ⊆        
A iff 

x ∈Ux ⊆  U ⊆  A iff  x ∈ Ux  ⊆  A iff Axx ⊆↑∈ . 
 (3) }.:{}:}{{}:{ AxxAxxAxxA ∈↓∪=∈∪=∈∪=  The second 

equality holds since  the space is Alexandroff space. 
  (4)  x ∈ A'  iff for every open set U, x ∈ U  we have U ∩ A\{x} ≠  φ  iff  Ux 

∩ A\{x} ≠  φ  iff φ≠∩↑ }{\ xAx  iff  ∃y ∈ A, with  x < y iff Ax ∈  
and Ay ∈∃ with x < y.     

In the following theorem we summarize some of the properties of preopen 
sets. 
Theorem  2.10.   [6]  For a subset A of a topological space (X, τ) the 
following 
conditions are equivalent: 
(1) A is preopen. 
(2) The semi-closure of A is a regular open set. 
(3) A is the intersection of an open set and a dense set. 
(4) A is the intersection of a regular open set and a dense set. 
(5) A is a dense subset of some regular open subspace. 
(6) A  is a dense subset of some open subspace. 
(7) A is a dense subset of some preopen subspace. 
(8) A is a preneighborhood of each one of its points. 
(9) scl(A) = Int(cl(A)) 

(10) There exists a regular open set R containing A such that cl (A) = cl(R). 

 

 

Here are the most fundamental properties of preopen sets: 
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• Noiri's Lemma [17]: If A is semi-open and B is preopen, then A ∩ B is 
semi-open in B and preopen in A. 

•  Jankovi'c and Reilly's Lemma [5]: Every singleton is either preopen or 
nowhere dense. 
• Arbitrary union of preopen sets is preopen. 
• Finite intersection of preopen sets need not be preopen. 
• The intersection of a preopen set and an α- open set is a preopen set. 
• The intersection P ∩ R of a preopen set P and a regular closed (resp. 
regular open) set R is regular closed (resp. regular open) in the preopen 
subspace P. 
• A set is α-open if and only if it is semi-open and preopen. 
• A set is clopen if and only if it is closed and preopen. 
• A set is open if and only if it is locally closed and preopen if and only if it 
is A- set and preopen if and only if it is a B-set and preopen. 
• A set is regular open if and only if it is semi-closed and preopen. 
• If  U  is a preopen subspace of a space (X, τ) and V a preopen subset of   
(U, τ|U), then V is preopen in (X, τ). 
• If  V is preopen such that U ⊆ V ⊆ Cl(U), then U is also preopen. 
• If V is preopen such that V ⊆ U ⊆ X، then V is also preopen in (U, τ|U) 
• If  A is an α-open subset of a space (X, τ) then a subset U of A is preopen 
in (A,τ|A) if and only if U is preopen in (X, τ). 
• If A is a preopen subset of a space (X, τ), then for every subset U of A we 
have A ∩ scl(U) = sclA (U). 
• If A is a preopen subset of a space (X, τ), then for every subset U of A we 
have  IntA(clA(U)) = A ∩ Int(cl(U). 
• If  P is preopen and S is semi-open, then P ∩ cl(S) =  cl( P∩ Int (S)) = cl(P 
∩S) = cl(P ∩ cl(S)) = cl(Int(cl(P) ∩ S)). 
• If A is preopen, then Cl (A) = Clθ(A). 
• PO(X, τ) = PO(X, τα). 

• Let (Xi)i ∈ I be a family of spaces and  φ ≠  Ai  ⊆ Xi  for each i ∈ I. Then, 
∏ ∈Ii iA  is preopen in ∏ ∈Ii iX   if and only if Ai is preopen in Xi for each i 

∈ I and Ai is non-dense for only finitely many i ∈ I. 
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Characterization of Preopen sets: 

In [9] the authors characterized the class of preclosed sets in the class of 
Artinian T0-Alexandroff spaces as the subsets that contain x↓  for all points 
x ∈ A ∩ M. 

In the next theorem we extend the characterization to the case of  T0-
Alexandroff spaces rather than the class of Artinian T0-Alexandroff spaces. 
Therefore, this characterization holds in every poset. In fact it states that a 
set A is preclosed in any poset if it contains x↓  whenever  Ax ⊆↑ . From 
which it follows that the subsets that have no interior are always preclosed. 
Theorem  3.1.   A subset A is preopen of a T0-Alexandroff space (X, τ) if 
and only if cAx ∈∀ , if φ≠∩↓ Ax  then φ≠∩↑ Ax . 
Proof.  (⇒ )  Suppose that A is a preopen subset of a space (X, τ). i.e., 

o

AA ⊆ . Assume that cAxAx ∈∀≠∩↓ ,φ . Then for every 
AxyAx x

c ∩↓∈∃∈ , . i.e., yx ∈ A and yx ∈ ↓x. Since yx ∈ A then by 

hypothesis 
o

Ay ∈  then Ayx ⊆↑  but xyx ↑∈ . It follows that Ax ∈  then 
Ax ∈∃ o  and oxx ↓∈ this implies xx ↑∈o  then .Axx ∩↑∈o  

)(⇐ Suppose that φφ ≠∩↑⇒≠∩↓∈∀ AxAxAx c , . Assume that A is 

not preopen. Then 
o

AyAy ∉∈∃ ,  i.e. y ∈ A and y↑  is not a subset of A . It 
follows that  Ayyy ∉↑∈∃ oo , . Consequently, Azyz ∉≥∀ ,o . Then 

φ=∩↑ Ayo , while φ≠⊇∩↓ }{yAyo . This contradicts the hypothesis 
that if φ≠∩↓ Ayo  then φ≠∩↑ Ayo .       
Corollary  3.2.  If  φ=∩↓∈∀ AxAx c ,  then A is preopen. 
Proof. Clearly, if  φ=∩↓∈∀ AxAx c ,  holds then 

φφ ≠∩↑⇒=∩↓∈∀ AxAxAx c ,  holds.     
Definition 3.3. A subspace A  of a topological space X is called 
disconnected iff there are disjoint nonempty open sets U1 and U2 such that A 
= U1 ∪ U2 , A is connected if A is not disconnected.  If A is the maximal 
connected subspace then A is called connected component. 
Corollary 3.2  proves that every connected component A of any T0- 
Alexandroff space is preopen, since for any connected component A the 
condition φ=∩↓∈∀ AxAx c ,  holds [9]. 
The implication statement in Theorem 3.1 can be restated as follows: 
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A subset A of a To- Alexandroff space (X, τ)  is preopen if and only if 
cAx ∈∀  if φ=∩↑ Ax  then φ=∩↓ Ax . 

Corollary 3.4.  A subset A is preclosed of a T0-Alexandroff space (X, τ) if 
and only if Ax ∈∀ , if φ≠∩↓ cAx  then φ≠∩↑ cAx  . Equivalently, A is 
preclosed if and only if  Ax ∈∀ , if Ax ⊆↑  then Ax ⊆↓ . 
Proof.  Apply Theorem 3.1 for Ac. 
Example  3.5. 
Let X = Z "the set of integers" with the natural partial order. Let A be the set 
of all even numbers (see Figure 1). Then by Theorem 3.1 A is preopen, since 
the condition cAx ∈∀ , if φ≠∩↓ Ax  then φ≠∩↑ Ax  holds. We know that 

it is preopen since ZA =  from which it follows that  ZA =
o

, which 

implies that 
o

AA ⊆ , i.e., preopen.  In fact the condition holds for the 
complement; the odd numbers, therefore, A is preclopen. 
 

 
 

 
 
 
 
 
 
 
 
 

  
Figure 1  

 
Theorem 3.6. Let (X, τ) be a T0-Alexandroff space. Let D be a subset of  X. 
Then D is dense iff for any x ∈ X, there exists  d ∈ D such that x ≤ d. 
  

Proof.  Let D be a dense subset of  X. Let x ∈ X be arbitrary point. It follows 
that x ∈ D  It follows that there exists d ∈ D such that x ≤ d. Conversely, for 
any x ∈ X we have x ≤ d  for some d ∈ D. It follows that x ∈ Dd ⊆}{ . 
Therefore, DX ⊆ .    
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Theorem 3.5 states that dense subsets must contain upper bounds of X. It 
follows that in any T0-Alexandroff space if a set of maximals M exists, then 
M and all supersets of M are dense. 
Example 3.7.  Let X = {a, b, c, d, e, f} and let A = {a ،b, c, f}. Then A is not 
preopen, since e ∈ Ac  with φ≠∩↓ Ae  while  φ=∩↑ Ae . (See figure2) 
 
 
 
 
 
 
 

  
 

Figure  2  
 
Here, we show that the characterization in case of Artinian T0-space follows 
from Theorem 3.1. These results are in [9]. 
Corollary 3.8.  Let (X, τ) be an Artinian To- Alexandroff space. Then the 
set A is preclosed if and only if  ↓x ⊆ A for all x ∈ A ∩  M. 
Proof.  Suppose that A is preclosed, It follows by Theorem 3.1 that ∀ x ∈ A, 
if   
↑x  ⊆ A then  ↓x ⊆ A. Since {x} = ↑x for all x ∈ M, then ↑x  ⊆ A holds for 
those 
 x ∈ A ∩ M . It follows that,  ↓x ⊆ A  for all x ∈ A ∩ M holds. 
Conversely, suppose that ↓x ⊆ A for all x ∈ A ∩ M  holds. Let x be any 
element of A with ↑x ⊆ A. Then  ↑x ∩ M ⊆ A ∩ M. Let a ∈ ↑x ∩ M . By 
hypothesis  ↓a ⊆ A. 
Since  x ≤ a then ↓x ⊆ ↓a . It follows that ↓ x ⊆ A. Therefore, by Theorem 
3.1 A is preclosed.                                                                                
Corollary 3.9.   Let (X, τ) be an Artinian To- Alexandroff space.Then: 
a) the set A is preopen if and only if ↓x ∩ A= φ  for all x ∈ Ac ∩ M. 
Equivalently, A is preopen if and only if x̂  ⊆ A  for all x ∈ A. 
b) If X contains a top element     , then a nonempty subset A is preopen if and 
only if  ∈ A if and only if A is dense. 
Proof.  Both (a), (b) are consequences of Corollary 3.8. 
It follows that we can determine all preclosed subsets in case the poset has a 
maximal element   ; if    ∈ A then A is preopen iff A is the whole poset, and 

a

d

b

c

e 

f
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if    ∉ A then A is always preclosed. It follows that, in this case, preopen sets 
are the empty set and all the ones containing    , in fact in this case a set A   is 
preopen iff  A is dense. And clearly, in this case the class of preopen sets 
form a topology. In fact this topology is the topology of the class of α-open 
sets τα. 
Theorem 3.10. Let (X,τ) be a T0-Alexandroff space and let S be a subset of 
X. Then: 
(1) pint(S)  = S ∩ int(cl S) 
(2) pcl(S) =  S ∪ cl(int (S)) 
Proof.  For the proof see [6].                   
Theorem 3.11. Let (X, τ)  be a T0-Alexandroff space and let S be a subset of 
X. Then 
1) pint(S)  = {x : x ∈ S  and ↑y ∩ S ≠ φ, ∀y ≥ x} 
2) pcl(S) =  {x : x ∈ S  or ↑y ⊆ S  for some  y ≥ x} 
Proof.   
1) x ∈ pint(S) iff x ∈ S and x ∈ int(cl(S)) iff x ∈ S and ↑x  ⊆ cl(S) iff  
x ∈ S and ∀y ∈↑ x, y ∈ cl(S)  iff x ∈ S and ∀y ∈ ↑ x , y ∈ ↓z  for some z ∈S 
iff x ∈ S and ∀y ≥  x, ∃ z ∈ S and z  ≥ y iff  x ∈ S and ∀y  ≥  x , z ∈ ↑y ∩ S 
i.e., ↑y ∩S ≠ φ. 
2) x ∈ pcl(S)  iff x ∈ S or x ∈ cl(int S) iff x ∈ S or x ∈ ↓ y for some y ∈ 
int(S) iff x ∈ S or  x ∈ ↓ y , ↑y  ⊆  S  for some y ∈ S iff x ∈ S or ↑y  ⊆  S for 
some y ≥ x.   
In order to find pcl(S) we look for all those y in S such that ↑y  ⊆  S and 

then we take ↓y  for pcl(S). Clearly, this shows that pcl(S) ⊆ cl(S), since 
cl(S) = ↓ S.  
Example 3.12.  X = { c, d, e, f, g , a0, a1, a2,… } and let A = {e, g، a0, a1, 
a2,...}. Then pint(A)  =  {a0, a1, a2,...} and  pcl(A) = { c, d, e, g, a0, a1, a2, 
…}. (See figure 3) 
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Figure 3 

Corollary 3.13.  Let (X, τ)  be an Artinian To- Alexandroff space and A  is a 
subset of X. Then: 
a) pint(S)  = {x ∈ S: Sx ⊆ˆ } 
b) pcl(S)= S ∪ {↓z: z ∈ S ∩ M} 
Proof.  
a) By 3.11 (1) pint(S) =  { x : x ∈ S and ↑y ∩ S ≠ φ, ∀y ≥ x}. Note that 

xxxx ˆˆ,ˆ =↑≥ . It follows that if  x ∈ pint(S) then x ∈ S and Sx ⊆ˆ . 
Conversely, if x ∈ S and Sx ⊆ˆ , then Syx ∩↑∈ˆ . Therefore, ↑y ∩ S ≠ φ, 
∀ y ≥ x, then x ∈ pint(S).              
b) By 3.11 (2)  pcl(S) = { x : x ∈ S or ↑y ⊆ S for some y ≥ x}. For any x ∈ ↓z 
with z ∈ S ∩ M, let y = z then y ≥ x, ↑y ⊆ S. It follows that x ∈ pcl(S). 
Conversely, if ↑y ⊆ S for some y ≥ x, then let z be any point in 

.ˆ Myy ∩↑=  We know that ↑y ∩ M ⊆ S ∩ M. It follows that x ∈↓z, z ∈ S 
∩ M.     
Example 3.14.  Let X = {a, b, c, d, e, f, g} and let A = {a, e, c, g}. Then  
pint(A) = {a}  and pcl(A) = {a, b, c, d, e, g}. (See figure 4) 

 
 
 
 

 
 
 
 
 

Figure 4 

Characterization of semi-open sets: 
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In the next Theorem 4.1 we characterize the class of semiopen subsets in 
an arbitrary poset. It states that a subset A of a poset X is semiopen iff for 
every x ∈A there is y ∈ A such that ↑y  ⊆ A. 

Theorem 4.1.  Let (X, τ(≤)) be a To- Alexandroff space. A subset A is semi-
open  if and only if ∀x ∈ A, ∃ y ∈ A, x ≤ y, ↑y  ⊆ A. 
Proof.  Assume A ⊆ oA and let x ∈A , then by hypothesis x ∈ oA  then ∃ y ∈ 

oA ⊆ A such that x ∈↓y, and ↑y ⊆ A. Therefore, ∀x ∈ A, ∃y ∈A, x ≤ y, ↑y ⊆ 
A, Conversely, let x ∈A, then by hypothesis ∃y ∈ A, x ≤ y, ↑y ⊆ A. It follows 
that y ∈ oA  . Since x ∈ ↓y , y ∈ oA , then x ∈ oA .    
Theorem 4.1  says that a set A is semi-open iff ↑x  is "finally" in A for every 
x ∈ A. 
Example 4.2.  Let X = {c, d, e, f, g, a0, a1, a2, …} and let A = { c, d, g, a0, 
a1, a2,… }. Then A is semi-open. However, the set B  = { c, d, e, g , a0, a1, 
a2,… }  is not semi-open. Let E ={ai : i is even} E is pre-open but not semi-
open. (see figure 5) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5 
 

Theorem 4.1 generalizes the characterization of semi-open sets in the 
Artinian T0- Alexandroff spaces to all T0-Alexandroff spaces. 
Corollary 4.3.  Let (X, τ) be an Artinian To-Alexandroff space, then a set A 
is semi-open if and only if M(A) ⊆ M. 
Proof.  Suppose that A is semi-open. Then by Theorem 4.1, we have 

AyyxAyAx ⊆↑≤∈∃∈∀ ,,, . Let x ∈ M(A), then there exists y ∈ A such 
that   
↑y ⊆ A. Since X is maximal in A then y = x. It follows that ↑x ⊆ A. Then  
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↑x ∩ M ⊆ A ∩ M , i.e., x = MAx ∩⊆ˆ . Therefore, x ∈ M . It follows that 
M(A) ⊆ M. 
Conversely, Suppose that M(A) ⊆ M. Clearly, for any x ∈A there is y ∈ 
M(A) such that x ≤ y. Since M(A) ⊆ M, then  ↑y = y ∈ A, it follows that ∀x 
∈ A, ∃y ∈ A, x ≤ y, ↑y ⊆ A.                   
Example 4.4.  Let X = {a, b, c, d, e, f}, A = {a, b}, then A is not semi-open, 
while  B = {e}, C = {d, e} are semi-open. (See Figure 6 ) 
 
 
 
 
 
 
 
 

Figure 6 
 
Corollary  4.5.  A subset A is semi-closed of a T0-Alexandroff space  (X, τ) 
if and only if ∀x ∈ Ac, ∃y ∈ Ac, x ≤ y, ↑y ⊆ Ac.  
Theorem 4.6.  A subset A is regular open of a T0-Alexandroff space (X, τ) if 
and only if ∀x ∈ Ac, ∃y ∈ Ac , y ≥ x such that ↑y ∩ A = φ and ↓y ∩ A = φ . 

Proof.  (⇒) Let A be a regular open subset of X then 
o

AA⊆ and AA ⊆
o

 
i.e., A is both preopen and semi-closed. Let x ∈ Ac, since A is semi-closed 
then ∃ z∈ Ac , z ≥ x such that ↑z ∩ A = φ and since A is preopen then ↓z ∩ A 
= φ. 

(⇐) Assume 
o

AA ≠ ,then one of two cases may happen either 
o

AAa \∈∃ or AAb \
o

∈∃ . 

Case 1:  If 
o

AaAa ∉∈∃ ,  then ↑a is not a subset of A . It follows that ∃ c 
∈↑a with c ∉ A .Consequently, c ∉ A. I.e., c ∈ Ac. It follows, by hypothesis, 
that  ∃ y ∈ Ac and  y ≥ c with ↑y ∩ A = φ and ↓y ∩ A= φ. However , a ∈ ↓y 
(since y ≥ c ≥ a ) then a ∉A. This is a contradiction to the fact that a ∈ A. 

Case 2:  If  AbAb ∉∈∃ ,
o

, then cAb ∈ . By hypothesis ∃y ∈ Ac , y ≥ b 
such that  
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↑y ∩ A = φ and ↓y ∩ A = φ. Since 
o

Ab ∈ then Ab ⊆↑ . Since y ∈ ↑b then y 
∈ A . It follows that ∃c ∈A such that y ∈↓c . So ↑y ∩ A ≠ φ. This is a 
contradiction to the fact that ↑y ∩ A = φ.   
Example 4.7.  Let  X = {a, b, c, d, e, f, g} , A = {a, b, c} then A is not 
regular. (See figure 7). 
 

 
Figure 7  

Example 4.8.  Let  X = {a, b, c, d, e, f, g}, A = {a, b, c} then A is regular. 
 (See figure 8) 
 
 
 
 
 
 
 
 

  
  

Figure 8  
 
Corollary 4.9.   A subset A is regular closed of a To-Alexandroff space (X, 
τ) if and only if  ∀x ∈ A, ∃ y ∈ A, y ≥ x such that ↑y ⊆ A and ↓y ⊆ A.  
The family of all semi-open (resp. preopen, α- open) is denoted by SO(X) 
(resp. PO(X), τα).  Njåstad [16] proved that τα is a topology on X. In 
general, SO(X) and PO(X) need not be topologies on X. A set  A is preopen 
[10] if and only if A = U ∩ D where U is an open set and D is a dense set. In 
[6], it has been shown that a set is α-open if and only if it is semi-open and 
preopen. 
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Theorem 4.10.  [4] Let (X, τ) be any topological space and let S be a subset 
of X. Then: 
1) sint(S) = S ∩ cl(int S) 
2) scl(S) = S ∪ int(cl (S)) 
3) intα (S) = S ∩ int(cl(intS)) 
Theorem 4.11.  Let (X, τ) be a T0-Alexandroff space and let S be a subset of 
X. Then 
1) sint (S)  = {x: x ∈ S and ↑y ⊆ S for some y  ≥  x}  
2) scl (S) = {x: x ∈ S or ↑y ∩S ≠ φ, ∀ y  ≥  x} 
3) intα (S) = {x: x ∈ S and ∀y  ≥  x, ∃ z ∈ S, y ∈ ↓z, ↑z  ⊆  S} 
Proof.   
(1) x ∈ sint(S)  iff x ∈S and x ∈ cl(int S) iff x ∈ ↓y  for some y ∈ int (S) ⊆ S, 
iff  x ∈ S and x ∈ ↓y , ↑y ⊆ S  for some y ∈ S. 
(2) x ∈ scl(S), iff x ∈ S or  x ∈ int(cl(S)), iff  ↑x ⊆ cl(S) iff ∀y ∈↑ x, y ∈ 
cl(S) iff  y ∈↑x , y ∈ ↓z , for some z ∈ S, iff ↑y ∩ S ≠ φ, ∀ y ≥ x. 
(3) x ∈ intα(S) iff x ∈ S and x ∈ int(cl(int S)) iff ↑x ⊆  cl(int S) iff 

)(int, Sclyxy ∈↑∈∀  iff  y ∈ ↓z  for some z ∈ int(S) iff  .Sz ⊆↑  
Although the characterization for pint(A) involves points y ∈ X, but we do 

not have to check it for all y ∈ X, in fact we need to check the condition 
only for those y above x only. 
Theorem 3.11 is the natural generalization for the characterization 

Theorem 4.13, in [9] 
Equivalently, we can restate 3.11 [1] as follows: 
Let (X, τ) be a T0-Alexandroff space and let S be a subset of X, then x ∈ 

pint(S)  iff ., xySy ≥∀≠∩↑ φ  
Corollary 4.12.  Let (X, τ) be an Artinian T0 - Alexandroff space and A is a 
subset of X. Then 
(a) pint(A) = }ˆ:{ AxAx ⊆∈  
(b) sint(A)  = }ˆ:{ φ≠∩∈ AxAx  
(c) pcl(A) =  }:{ MAxxA ∩∈↓∪  
(d) scl(A)  =  }ˆ:{ AxxA ⊆∪ . 
Corollary 4.13.  Let (X, τ) be an Artinian To- Alexandroff space, and let A 
be a subset of X, then 
 (i)   scl(A)  ⊆ pcl(A). 
(ii)   pint(A)  ⊆  sint(A) 
 



 
 
 

Preopen and semi-open in T0-Alexandroff space  
 

  

 413

REFERENCE: 
1. Alexandroff, P.(1937):  Diskrete Räume, Mat. Sb.(N.S.) 2, 501-518. 
2. Arenas, F.G.(1997):  Some results on Alexandroff space, Preprint, 
Topology Atlas. 
3. Arenas, F.G.(1999): Alexandroff spaces, Acta Math. Univ. Comenianae, 
68, 17-25. 
4. Andrijevic. D. (1984) : Some properties of the Topology of α-sets, Mat. 
Vesnik 36, no. 1, 1-10. 
5. janković D. and I. L. Reilly.(1985) : on semi-separation properties, Indian 
J. Pure Appl. Math., 16, 957-964. 
6. Dontchev, J. Survey on preopen sets, The Proceedings of the (1998): 
Yatsushiro Topological conference, 1-18. 
7. Dontchev, J. Topological properties defined in terms of generalized open 
sets, Presented at the (1997):Yatsushiro Topological Conference,Japan,1-14. 
8. El-Atik,A.E., Abd El-Monsef,M.E  and Lashin, E.I.(2001): On finite To 
topological spaces, Proceedings of the ninth Prague Topological 
Symposium, (Prague), 75-90, Topological Atlas, Toronto, 2002. 
9. Elatrash, M.  and Mahdi, H.(2005): On T0-Alexandroff spaces Journal of 
The Islamic University of Gaza, Series of Natural Studies \& Engineering, 
Vol. 13, No. 2,  pp. 19-46. 
10. Ganster, M.(1987) : Preopen sets and resolvable spaces, Kyungpook 
Math. J. 27(2), 135-143. 
11. Johnstone, P.T.(1982,1986): Stone spaces, Cambridge University Press 
edition. 
12. Levine, N.(1961): A decomposition of continuity in topological 
spaces,Amer. Math. Monthly 68, 44-46  . MR 23 #A3548 
13. Mashhour, A.S. , Abd El-Monsef, M.E. and El-Deep، S.N.(1982, 1983) : 
On precontinuous and weak precontinuous mappings, Proc. Math. Phys. 
Soc. Egypt, no.53, 47-53. MR 87c:54002 
14. McCord, M. C.(1966): Singular homology and homotopy groups of 
finite topological spaces, Duke Math. Jour، 33, 465-474. 
15. Naturman, C.A.(1991): Interior Algebras and Topology, Ph.D. thesis, 
University of Cape Town Department of Mathematics. 
16. Njåstad, O.(1965) : On some classes of nearly open sets, Paci c J. Math. 
15, 961-970. 



 
 
 
 
M. Elatrash et al., J. Al-Aqsa Unv., 10 (S.E) 2006 

  

 414

17. T. Noiri.(1984) :, Hyperconnectedness and preopen sets Rev.Roumaine 
Math. Pure Appl. 29 (4), 329-334. 


