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ABSTRACT

In three dimensions, or more generally, below the upper critical
dimension, scaling laws for critical phenomena seem well understood, for
both infinite and for finite systems. Above the upper critical dimension (four
dimensions and more), finite-size scaling is more difficult.

Deviation was predicted in the universality of the Binder cumulants
for three dimensions and more for the Ising model. This deviation occurs if
the critical point T = Tc is approached along lines of constant A = L*L*(T-
Tc)/Tc, then different exponents which are function of system size L are
found depending on whether this constant A is taken as positive, zero, or
negative. This effect was confirmed by Monte Carlo simulations. Because
of the importance of this effect and the unclear situation in the analogous
percolation problem, we reexamine in this article the five-dimensional
Glauber kinetics. For this purpose, Monte Carlo simulations of five
dimensions Ising models have been investigated by developing a
FORTRAN program around a critical point K. = 0.1139150. Our
Simulations confirm the prediction of Chen and Dohm of three different
finite-size exponents for the spontaneous magnetization near the critical
point which partially contradicts Schulte and Drope findings.
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INTRODUCTION:

In recent years, the question of universality of the five—dimensional Ising
model has been arisen. This question focuses on the value of susceptibility
varying with temperature near the critical temperature for different size of
lattices; we will investigate the susceptibility of the five-dimensional Ising
model. In 2004 Chen and Dohm predicted theoretically [1], that the widely
believed universality principle is violated in the Ising model on the simple
cubic lattice with more than only six nearest neighbors. They also found
deviations between the theories of dimension of four and more on a Lattice
and in the continuum. In 2005 this prediction was partially confirmed [2-3].
Other research groups [4-7] studied the 2D and 3D Ising model for different
parameters and also for directed interactions problems occur in the Ising
model. Schulte and Drope [3] by Monte Carlo simulations with Glauber [8]
and Creutz [9] kinetics, found such violation, but not in the predicted
direction. Selke and Shchur [2] tested the square lattice. For this
importance effect and the unclear situation in the analogous percolation
[10], here we reexamine this universality for the susceptibility ratio and
magnetization near the critical point. For this purpose we study first the
standard 5D Ising model with ten nearest neighbors.

Our study is based on Monte Carlo simulations for systems with linear
different sizes (10, 13, 17, 31, 37, and 71).

We used within this work the critical point: J/kTc = Kc = 0.1139150 as in
ref. [11].

A FORTRAN program was developed and used for the above simulation.
This program is stated at the appendix (1).

Simulations and Results:

In this article we present new results using Monte Carlo simulation for the
universality scaling of five-dimension Ising model with the Susceptibility
and the Magnetization along lines of constant near the critical point.

To study the critical behavior of the five dimension Ising Model we define
the variable m such as:

N
O .
m=>» — ,
2N
where o; is the ith spin value of the ith site in the lattice, and N is the total

site number of the lattice.
We are interested in the Magnetization and Susceptibility as the following:

M:[<|m| >]ave

360



Reexamination of Scaling in the Five-dimensional ...

Y=<’ >-<im|> Jae
where < --- > stands for a thermodynamic average and [ --- ] ave SQuare

brackets for an average over all time.
X is the Susceptibility, m is the magnetization for any iteration and M is the

Magnetization of the Ising model over all time.
From our simulation study for different sizes of lattice, by varying the
temperature near the critical temperature, the data are shown in table (1).

Table (1) Susceptibility versus temperature with different size size
lattices for 10 nearest neighbors

(Te-T)/Tc Susceptibility

L=10 L=13 L=17 L=23 L=31
-0.05 8.6 8.8 9.2 9.5 9.4
-0.04 114 11.1 12.3 12.8 12.2
-0.03 17.4 16.7 16.4 17.6 17.0
-0.02 30.4 24.6 27.6 28.3 27.3
-0.01 64.2 59.6 57.5 56.7 63.5

0 623.0 | 1129.1 | 2174.2 3166.4

0.01 129.0 | 1304 122.2 114.0 134.0
0.02 67.9 67.2 64.0 61.8 68.2
0.03 41.7 40.6 43.8 40.0 42.0
0.04 313 32.6 314 31.8 325
0.05 26.9 26.4 25.8 24.4 26.9
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L=10(+),13(x),17(*).23(empty 5q.),31(full g.) with Time=30,000, with slope =1.0
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Figure (1): Susceptibility versus temperature with different L's (10, 13,
17, 23, 31), for 10 nearest neighbors as log-log plot, the upper data
correspond to T > Tc with amplitude 1.3, and the lower to T < Tc with
amplitude 0.5, and straight lines had the theoretical slope (-1).

The ratio of susceptibility is calculated by dividing the susceptibility of
temperature above Tc to the susceptibility below Tc, then the ratio of
susceptibility for [Tc-T|/Tc is obtained as presented in table (2).

Table (2) Ratio of susceptibility versus temperature for different size
lattices for 10 neighbors

Te-T)Te Ratio of Susceptibility
L=10 L=13 L=17 L=23 L=31
0.01 2.0 2.2 2.1 2.0 2.1
0.02 2.2 2.7 2.3 2.2 2.5
0.03 2.4 2.4 2.7 2.3 2.5
0.04 2.8 2.9 2.6 2.5 2.7
0.05 3.1 3.0 2.8 2.6 2.9
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The ratio of susceptibility was drawn versus |Tc-T|/Tc as shown in figure

().

Ratio of Susceptibility Versus Log [|T-Tc|/Tc]for L=10(+),13(x),17(*),23(empty sq.),31(full 5q.)
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Figure (2): Ratio of susceptibility above to below Tc, plotted semi-
logarithmically versus [|Tc-T|/Tc], for the size lattices (10, 13, 17, 23, 31)
for 10 neighbors up to time = 50000.

It can be seen that the ratio of susceptibility is roughly constant for varying
size of lattice but increases away from the critical temperature.
When large lattice as L=71 is tested for different times (500, 5000), our
simulation gives the data as presented in table (3).
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Table (3): Magnetization and susceptibility versus temperature with
fixed size L = 71 of lattice
L=71 for T=500-5000.

*
(T-Te)Te | <M> <'E"Su'\s/'c:p<t'i\g;;§;'> IT-TejiTe
T=500 iterations
-0.05 0.44731 8.6 0.05
-0.04 0.40531 10.5 0.04
-0.03 0.35609 13.9 0.03
-0.02 0.29553 41.3 0.02
-0.01 0.21340 28.5 0.01
0 0.06993 78126 0
0.01 0.00202 5493 0.01
0.02 0.00017 44.9 0.02
0.03 0.00002 94.7 0.03
0.04 -0.00008 447 0.04
0.05 -0.00002 26.4 0.05
T=5000 iterations
-0.01 0.21337 72.4 0.01
0.01 0.00015 182.3 0.01
0.02 0.00001 70.9 0.02
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susceptibility above (top) and below (middle) Tc, magnetization below Tc (bottom); L=71, t=500 and 5000
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Figure(3): [M| and susceptibility versus [|Tc-T|/Tc] with fixed size L =
71 of lattice in log-log plot with lines indicating the theoretical slopes -1
and + %,

It can be seen from figure 3 that susceptibilities scatter much more than the
magnetizations.

Now we test the universality of 5D Ising model and vary T along lines of
constant A = L*L*(T-Tc)/Tc below, at and above Tc with different L's
(10, 13, 17, 23, 31) for many times (500000).

The obtained data are presented in Tables (4 —a,b,c).
Table (4-a): Average magnetization versus different size’s L along
constant A = L*L*(T-Tc)/Tc =- 1.0 with time = 500,000

- <M*M>-

L Té)/'TC <|M|> <M><M> IT-Tc)/Tc | M*M*chi
( Susceptibility)

10 | -0.00990 | 0.20955 64.9 0.00990 2.85
13 | -0.00588 | 0.16424 109.3 0.00588 2.95
17 | -0.00345 | 0.12741 184.1 0.00345 2.99
23 | -0.00189 | 0.09505 358.8 0.00189 3.24
31 | -0.00104 | 0.07121 630.8 0.00104 3.20
31 | -0.00104 | 0.07106 567.2 0.00104 2.86
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Table (4-b) : Average magnetization versus different size’s L along
constant A = L*L*(T-Tc)/Tc =+ 1.0 with time = 500,000

T <M*M>-
L Té) /'TC <|M|> <M><M> IT-Tc|/Tc | M*M*chi
(Susceptibility)
10 | 0.01010 | 0.02828 124.4 0.01010 0.10
13 | 0.00595 | 0.01896 210.0 0.00595 0.08
17 | 0.00347 | 0.01262 352.7 0.00347 0.06
23 | 0.00189 | 0.00785 622.1 0.00189 0.04
31 | 0.00104 | 0.00574 1500.6 0.00104 0.05
31 | 0.00104 | 0.00538 1324.3 0.00104 0.04
37 | 0.00073 | 0.00426 1789.0 0.00073 0.03

Table (4-c) : Average magnetization versus different size’s L along
constant A = L*L*(T-Tc)/Tc = 0 with time = 500,000

T <M*M>-
L Té) /'TC <|M|> <M><M> IT-Tc|/Tc | M*M*chi
(Susceptibility)
10 | 0.00000 | 0.06309 548.8 0.00000 2.18
13 | 0.00000 | 0.04565 1077.0 0.00000 2.25
17 | 0.00000 | 0.03269 2124.6 0.00000 2.271
23 | 0.00000 | 0.02257 4591.8 0.00000 2.34
31 | 0.00000 | 0.01458 7299.8 0.00000 1.56

If the average of the absolute value of magnetization is taken, and plotted
against the size of lattices for all constants (A = +1, 0, -1) with log-log
scale, the slopes are obtained as in figure (4), in agreement with previous
theories and simulations [1,8,9].
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Figure (4) : <|M|> versus size L of lattice (10, 13, 17, 23, 31), in log-log

plot along constant A = L*L*(T-Tc)/Tc . The upper data correspond to
T<Tc (A=-1) with slope -1, the middle data correspondto T =Tc (A =
0) with slope -5/4, and the lower correspond to T >Tc (A=+1) with slope

-3/2.

By drawing the susceptibility versus the size L of lattices for the constants

(A =+1, 0, -1) with log-log scale , we get different slopes, twice as large as
that for the magnetization in the previous figure, as shown by figure (5).
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Figure (5): Susceptibility(<M*M> -<M>*<M>) versus size L of lattice

(10, 13, 17, 23, 31), as log-log plot along constant A = L*L *(T-Tc)/Tc,

the upper data correspond to T=Tc (A=0), the middle datato T > Tc
(A=1.0), and the lower data to T < Tc (A=-1). The middle data fit better

the indicated slope 2 than the expected slope 3.

CONCLUSION:

This study confirmes [1,8,9] that finite size scaling in high dimensions is
described by different exponents if we approach the critical point along
different lines in the plane of T-Tc versus 1/(L*L), above, at, and below Tc.
This result holds not only for the magnetization [8] but also for the
susceptibility. Though the susceptibilities above Tc are problematic.
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Appendix
Programming used in Simulations
A: Main program:
PARAMETER(L=17,L2=L*L,L3=L2*L,L4=L2*L2,L5=L3*L2,
1 LMAX=L5+2*L4)
INTEGER *8 IBM,IEX
DIMENSION IEX(-10:10)
BYTE IS(LMAX)
DATA TC,MAX,IBM,ISEED/0.113915,500000,1,1/
IBM=2*ISEED -1
C TR=1.01
CONST=0.0
T=-(TC*CONST/L2)+TC
T1=TC/T-CONST
C T=TI*(1.0-0.1/(L*L))
PRINT *,L, T, T1,MAX,ISEED
C T=T/TR
C T=1.01*0.1139150=0.11505415
LP1=L4+1
L2PL=L5+L4
DO 1 1=1,LMAX
1 1S(1)=1
DO 2 1E=-10,10
IBM=IBM*16807
EX=EXP(-2.0*IE*T)
2 IEX(IE)=2147483648.0D0*(4.*EX/(1.0+EX)-2.0)*2147483648.0D0
DO 3 MC=1,MAX
DO 4 I1=LP1,L2PL
IE=IS()*(1S(1-1)+1S(1+1)+1S(1-L)+IS(1+L)+IS(I-L2)+IS(1+L2)
1 +1S(1-L3)+IS(1+L3)+IS(I-L4)+IS(1+L4))
IBM=IBM*16807
IF (IBM.LT.IEX(IE)) 1S(1)= -15(1)
IF(I.LNE.2*(L4)+1) GOTO 4
DO 7J=1,L4
7 IS(J+L5+L4)=IS(J+L4)
4 CONTINUE
FACTOR=1.0/(L*L*L*L*L)
DO5I1=1,L4
5 1S(1)=1S(1+L5)
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MAGN=0
DO 6 I=LP1,L2PL
6 MAGN=MAGN+IS(I)
X=MAGN*FACTOR
3 PRINT *,MC,MAGN,X
STOP
END
B: Analysis program:
INTEGER*8 MAGN,SUMMAG,SUMSQU
REAL*8 X, AVERGESUMMAG,AVERGESUMSQU
READ *,L,T,T1,MAX,ISEED
LS5=L*L*L*L*L
SUMMAG=0
SUMSQU=0
COUNT=0
DO 100 I=1,MAX
READ *,MC,MAGN
X=MAGN
IF(MC.LE.(MAX/2)) GO TO 100
SUMMAG=SUMMAG+X
C M=ISUMMAG=ISUMMAG+MAG
SUMSQU=SUMSQU+X*X
C M**2=|ISUMSQU=ISUMSQU+MAG*MAG
C PRINT *, MC, ISUMMAG,ISUMSQU
100 CONTINUE
AVERGESUMMAG=SUMMAG/(MAX*0.5D0)
AVERGESUMSQU=SUMSQU/(MAX*0.5D0)
X=AVERGESUMMAG/L5
CHI=(AVERGESUMSQU-AVERGESUMMAG**2)/L5
PRINT 1,L,T,X,CHI,ABS(T),X*X*CHI
C PRINT 1,AVERGESUMMAG,AVERGESUMSQU,
C 1 (AVERGESUMSQU-AVERGESUMMAG**2)/(L*L*L*L*L)
C SUSCEPITIBILITY=(AVERGESUMSQU-
C AVERGESUMMAG**2)/(L*L*L*L*L)=<M**2>-
<M>**2[(L*L*L*L*L)
C 1 ISUMSQU*(MAX*0.5D0)-ISUMMAG*ISUMMAG
C 1 FORMAT(1X,3F19.5,119)
1 FORMAT (1X,12,5F15.5)
STOP
END
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