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The ground state energy of an exterior surface polaron under
the effect of an external magnetic field .
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ABSTRACT

Under the effect of an external magnetic field the ground state energy
of an extrinsic electron interacting with the surface modes of a semi-infinite
medium is calculated using a variational approach. The approach is to be
valid for all values of the electron-phonon coupling. It is observed that the
magnetic field enhances the effective electron-phonon coupling rather
prominently.
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INTRODUCTION:

The interaction of an electron with the surface elementary excitations on a
semi-infinite medium has received much attention in the past decades [1-].
The problem is interesting from a technological viewpoint in the context of
surface spectroscopy and the study of the optical properties of polar thin
films and interfaces.

Evans and Mills [1] used the Lee-Low-Pines theory to study the binding of
electrons to the crystal surface. They considered the cases where the
electron is outside and inside the crystal. Tokuda [2], and Bodas and
Hipolito [3] considered only the case where the electron lies outside the
crystal. They observed a phase-transition-like behavior from the quasi-free
to the self-trapping electron state as the electron-phonon coupling constant
exceeds a certain critical value. The effect of the magnetic field on the
problem is investigated by Bhattacharya et al [4] using a canonical
transformations method. Using a variational approach, Ninno and ladonisi
[5], calculated the ground state energy and the wave function of an electron
near the surface of a polar crystal. Sagqga et al [6] and Xiukun [7] studied the
effect of the magnetic field on an electron near the surface of a crystal using
the strong-coupling theory. The effect of both the magnetic field and the
temperature is addressed by Eerdunchaolu et al [8].

The common conclusion reached by the previous mentioned works is that
for a sufficiently large coupling constant the electron goes into a bound state
in which it is localized in the close vicinity of the exterior face of the
material by the strong interaction with the surface oscillation modes. It has
been observed that certain polaron quantities such as the ground state
energy, the mean number of phonons around the electron, or the degree of
localization are all enhanced by coupling strength. A further important
finding is that the effective potential deviates considerably from the
classical Coulomb profile ( and in particular, at a distances close to the
surface, the electron-phonon coupling imposes a rounding off of the
divergence encountered in the classical picture. The application of an
external magnetic field in the problem brought about an additional
contribution to the localization of the electron so that the electron interacts
with the phonons in a more efficient manner. This leads to an enhancement
in the binding and an increase in the degree of confinement of the electron
toward the surface .
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In the following it is referred to the surface polaron problem considering
the case where the electron is outside the medium and study the effect of an
external magnetic filed using the variational method of Devreese et al [9].

The procedure is a combination between the adiabatic approximation and
the first order perturbation method by adopting a variational trial function
by which it is possible to extrapolate from the strong coupling regime
toward the weak coupling one.

The model adopted in this work consists of an ionic or polaro material
filling the half space  and an electron localized near, but completely
external to, the material surface. The exterior electron has an electric field
which influences and polarizes the surface modes. These modes, when
polarized, create electric fields which in turn act back upon the electron. The
electron is therefore attracted to the surface by its image potential and in
the mean time is repelled away by the repulsive barrier resulting from the
large difference between the bottom of the conduction band and the vacuum
level of the material. It should be noted that the interaction of the electron
with the bulk modes are ignored since the electron is outside the material.

Theory:

Using the symmetric gauge for the vector potential, the Hamiltonian
describing an electron with position coupled to the surface optical (SO)
phonons and acted upon by a uniform magnetic field perpendicular to the
surface can be written as

H=H,+Yal aK+ZFK(aKe"“p +age"“p) 1)

K

H0=pf+p§+%((2/2)2(x2 +y2)+(Q/2)IZ (2)
t

where the operators a,.

and are the creation and annihilation operators of

a phonon of wave vector x,, respectively andQ is the dimensionless
cyclotron frequency. The interaction amplitude is related to the electron-SO-
phonons coupling constant ¢ and the phonon wave vector k¥ through the

relation [1]
=2 ®
Sk

where S is the normalization area. L, in equation (2) is the z-component
of the angular momentum. It should be noted that all physical quantities and
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operators will be given in dimensionless form where energies are scaled by
the SO-phonon 7w and lengths by the polaron radius 1//‘1/2ma)

The variational procedure followed here assumes the electron and the
lattice variables are totally separable with the wave function given by

Y=0,0 ph (4)
with @, and @ ;, represent, respectively the electron part and the

phonon part of the wave function. For the strong-coupling approximation
the phonon part of the wave function is given as

$on =€°]0) (5)

where is the phonon vacuum. The exponential operator with
T
S:ZFK(aK_aK) (6)
K

is the canonical coherent state transformation which, in the semi-classical,
leads to the optimal surface polarization centered on the mean charge
density induced, by electron, on the surface of the material. The amplitude
F. depends implicitly on the electron wavefunction and must be treated as a
variational parameter to be determined by the requirement that the energy of
the system be minimized. Optimization of the transformed Hamiltonian
H'=e®He’=Hy+> ala +> F? —ZFK(aK +a,1)+

(7)

ST, (a,(ei"'p + a,T(e‘i""’) —ZFZFK (ei""’ + e“""’)
K K

With respect to the ground state we obtain
Fo = (¢ L™ P|ge)  (8)

And the ground state energy in the strong coupling regime is given by
2
Esc:eo_ep:<¢e‘Ho‘¢e>_ZFK (9)
K

To extend the formulation to the weak coupling case we include a first
order correction to the trial state @, ‘O> with the last term in equation (7)
being a perturbation. We then have

é\{,:zzhx a4 0) (10)

J
&—¢j-1
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Where
n, = FKei"'p -F (11)

K

The summation over the intermediate states can be projected out simply by
replacing the energy dominator by an average quantity which in the
calculation will be determined variationally. Using completeness we write

O =3 T,.9,7:8,]¢)|0) (12)

Where g, is another variational parameter. The trial wavefunction of the
Hamiltonian H' is then extended to

¥'=ng,|0) + ¥ (13)
Where n is a normalization constant. The optimal fit to g,. is achieved by
minimizing (Y'|H |\P"") subject to the constraint

LI”>=n2[1+Zl“,f(g,(/n)zh,(le (14)

(w

In which

h/c = <¢e ‘771(77;: ¢e> (15)

For the energy we then have

Eg =E, +4 (16)
Where A is a Lagrange multiplier depending on o and Q through the
equation
A=>TZ(g,/n)h, (17)
K
where
g./n=-h/le, - fo+ll-2-e, —e, h,] (18)
With
€ :<¢e ‘UKHOUZ‘¢e> (19)
And

fo =S T2Fx(dy | €° + 67 Jp2 | 4, ) (20)
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Selecting a Gaussian spread (with variance ol ) in the transverse
direction and describing the localization in the remaining direction by

::(,/)’Z/Zyéze‘/“/2 (21)
with {3 is to be determined variationaly, we obtain
€ =o 2 +%ﬂ2 +(%QO')2 (22)
e, :ajgod/c FK2 (23)

-3
F, =S, (0)R(B) =€ 7™ )(1+%] o
« =Ry (B)=SZ(c)RZ(B) (25)
e, =Ry (B)eo + 2% + x|
+52(6)R2(B)ley — 2072~ L(x + p)?]
fo =20 dcS2R, Ry + SZRZR |

K Ve NN

(26)

(27)
—40S%R, I;O dcSZRR,_, 1, (KK‘ 02/2)

In which lo is the modified Bessel function of order zero.

RESULTS AND DISCUSSION:

It is clear from equation (16) that the energy differs from that of the strong
coupling regime, given by equation (9), by the additive term A through
which the adiabatic theory goes over to the weak coupling regime. For large
values of the coupling constant o, S,(o) andR,.(f) defined by
equation (24) both approach unity and hence 4 — 0 Consequently the
strong coupling limit is readily obtained. For small o however the role of A

becomes very prominent and the polaron binding is dominantly determined
by this term.

It is worthy knowing that, restricting the electron charge fluctuations to be
just on the surface, the present model conforms to that for strictly two-
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dimensional magnetopolaron [11]. Imposing an infinitely large value for
in equation (21), the strong coupling ground state energy simplifies to

E =O'_2+lQO'2\/EaO'_l. 28
g (4 ) 2 (28)

For strong coupling and weak magnetic field (Q/az ( 1) , the dominant
contribution come from the first and the third terms in equation (28).
Minimization of the dominant part gives

Eq :—%az[l—(ZQ/ﬂaz)z} (29)

Which is the two-dimensional analogue of the corresponding bulk value
[12].

In order to find an optimization for the energy in equation (16) in the
overall range of the magnetic field one requires numerical techniques.

Figure (1) shows the dependence of the binding energy (Eb = Eg - %Q)

on o using the strong coupling and the extended theories disregarding the
magnetic field effect. To show the effect of the magnetic field on the
problem, figure (2) represents the binding energy as a function of o for for
Q2 =4 From the two figures it is concluded that the two theories are in
close quantitative agreement for large values of o Furthermore, in spite of
small values of a, the problem show up a pseudo strong coupling
counterpart at high magnetic fields. For « =1 the discrepancies between
the two theories are found to be 55% and 27% for Q=0 and Q=4
respectively. The corresponding percentages for & =10 are 17% and 7%.
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o
Figure 1. The binding energy as a function of a with zero magnetic
field. The solid and the dashed lines corresponding to the strong
coupling and the extended theories, respectively.
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o
Figure 2. The binding energy as a function of o with QQ=4. The solid
and the dashed lines corresponding to the strong coupling and the
extended theories, respectively.
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CONCLUSION:

The present work retrieves the problem of an exterior surface polaron
under the effect of an external magnetic field using a variational procedure
intended to be valid for the overall range of the coupling constant. In spite
of small o, the problem show up a pseudo strong coupling counterpart at
high magnetic field
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