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The ground state energy of an exterior surface polaron under 
the effect of an external magnetic field 
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 الملخص

تم دراسة طاقة الوضع الأرضي لإلكترون مقترن بالبولارن السطحي تحت تأثير مجـال             

التي تصلح لكل قيم ثابـت الإقتـران   الطريقة المستخدمة هي طرقة التغيير و . مغناطيسي خارجي 

لقد لوحظ أن المجال المغناطيسي يعزز أهمية إقتران الفونونات مـع           . بين الإلكترون والبولارون  

 . الإلكترون بصورة واضحة
 
 

ABSTRACT 
 

Under the effect of an external magnetic field the ground state energy 
of an extrinsic electron interacting with the surface modes of a semi-infinite 
medium is calculated using a variational approach. The approach is to be 
valid for all values of the electron-phonon coupling. It is observed that the 
magnetic field enhances the effective electron-phonon coupling rather 
prominently. 
 
Keywords: phonon, polaron, surface polaron, magnetopolaron, surface 
exitations. 
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INTRODUCTION: 

The interaction of an electron with the surface elementary excitations on a 
semi-infinite medium has received much attention in the past decades [1-]. 
The problem is interesting from a technological viewpoint in the context of 
surface spectroscopy and the study of the optical properties of polar thin 
films and interfaces. 

Evans and Mills [1] used the Lee-Low-Pines theory to study the binding of 
electrons to the crystal surface. They considered the cases where the 
electron is outside and inside the crystal. Tokuda [2], and Bodas and 
Hipolito [3] considered only the case where the electron lies outside the 
crystal. They observed a phase-transition-like behavior from the quasi-free 
to the self-trapping electron state as the electron-phonon coupling constant 
exceeds a certain critical value. The effect of the magnetic field on the 
problem is investigated by Bhattacharya et al [4] using a canonical 
transformations method. Using a variational approach, Ninno and Iadonisi 
[5], calculated the ground state energy and the wave function of an electron 
near the surface of a polar crystal. Saqqa et al [6] and Xiukun [7] studied the 
effect of the magnetic field on an electron near the surface of a crystal using 
the strong-coupling theory. The effect of both the magnetic field and the 
temperature is addressed by Eerdunchaolu et al [8]. 
The common conclusion reached by the previous mentioned works is that 

for a sufficiently large coupling constant the electron goes into a bound state 
in which it is localized in the close vicinity of the exterior face of the 
material by the strong interaction with the surface oscillation modes. It has 
been observed that certain polaron quantities such as the ground state 
energy, the mean number of phonons around the electron, or the degree of 
localization are all enhanced by coupling strength. A further important 
finding is that the effective potential deviates considerably from the 
classical Coulomb profile (  and in particular, at a distances close to the 
surface, the electron-phonon coupling imposes a rounding off of the 
divergence encountered in the classical picture. The application of an 
external magnetic field in the problem brought about an additional 
contribution to the localization of the electron so that the electron interacts 
with the phonons in a more efficient manner. This leads to an enhancement 
in the binding and an increase in the degree of confinement of the electron 
toward the surface . 
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In the following it is referred to the surface polaron problem considering 
the case where the electron is outside the medium and study the effect of an 
external magnetic filed using the variational method of Devreese et al [9]. 
 The procedure is a combination between the adiabatic approximation and 

the first order perturbation method by adopting a variational trial function 
by which it is possible to extrapolate from the strong coupling regime 
toward the weak coupling one. 
The model adopted in this work consists of an ionic or polaro material 

filling the half space   and an electron localized near, but completely 
external to, the material surface. The exterior electron has an electric field 
which influences and polarizes the surface modes. These modes, when 
polarized, create electric fields which in turn act back upon the electron. The 
electron is therefore attracted to the surface   by its image potential and in 
the mean time is repelled away by the repulsive barrier resulting from the 
large difference between the bottom of the conduction band and the vacuum 
level of the material. It should be noted that the interaction of the electron 
with the bulk modes are ignored since the electron is outside the material. 
 
Theory: 
Using the symmetric gauge   for the vector potential, the Hamiltonian 

describing an electron with position   coupled to the surface optical (SO) 
phonons and acted upon by a uniform magnetic field perpendicular to the 
surface can be written as 

( )∑∑ ⋅⋅ +Γ++=
κ

κκ
κ

κκ
ρρ κκ i

Q
i eaeaaaHH ††
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where the operators †
κa  and   are the creation and annihilation operators of 

a phonon of wave vector κ,, respectively andΩ  is the dimensionless 
cyclotron frequency. The interaction amplitude is related to the electron-SO-
phonons coupling constant α   and the phonon wave vector κ   through the 
relation [1] 
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where S is the normalization area. zL  in equation (2) is the z-component 
of the angular momentum. It should be noted that all physical quantities and 
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operators will be given in dimensionless form where energies are scaled by 
the SO-phonon ωh  and lengths by the polaron radius ωm2h  
The variational procedure followed here assumes the electron and the 

lattice variables are totally separable with the wave function given by 
 

phe ΦΦ=Ψ              (4) 
With phe ΦΦ and  represent, respectively the electron part and the 

phonon part of the wave function. For the strong-coupling approximation 
the phonon part of the wave function is given as 

0S
ph e=φ               (5) 

where   is the phonon vacuum. The exponential operator with 
( )∑ −=

κ
κκκ
†aaFS             (6) 

is the canonical coherent state transformation which, in the semi-classical, 
leads to the optimal surface polarization centered on the mean charge 
density induced, by electron, on the surface of the material. The amplitude  
Fκ depends implicitly on the electron wavefunction and must be treated as a 
variational parameter to be determined by the requirement that the energy of 
the system be minimized. Optimization of the transformed Hamiltonian 

( )
( ) ( )∑∑

∑∑∑
⋅−⋅⋅−⋅

−

+Γ−+Γ

++−++==′

κ
κκ

κ
κκκ

κ
κκκ

κ
κ

κ
κκ

ρρρρ κκκκ iiii

SS

eeFeaea

aaFFaaHeHeH

†

†2†
0

            (7) 

With respect to the ground state   we obtain 

e
i

e eF φφ κκ
ρ⋅±Γ= κ      (8) 

And the ground state energy in the strong coupling regime is given by 

∑−=−=
κ

κφφ 2FHeeE eoeposc    (9) 

To extend the formulation to the weak coupling case we include a first 
order correction to the trial state 0eΦ  with the last term in equation (7) 
being a perturbation. We then have 
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Where 
κκλη Fei −Γ= ⋅ρκ       (11) 

The summation over the intermediate states can be projected out simply by 
replacing the energy dominator by an average quantity which in the 
calculation will be determined variationally. Using completeness we write 

0†
eag φηδ κκ

κ
κκ

∗∑Γ=Ψ                   (12) 

Where κg  is another variational parameter. The trial wavefunction of the 
Hamiltonian H ′  is then extended to 

Ψ+=Ψ′ δφ 0en                     (13) 

Where n is a normalization constant. The optimal fit to κg  is achieved by 

minimizing Ψ′′Ψ′ H  subject to the constraint 
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For the energy we then have 
λ+= scg EE                     (16) 

Where λ is a Lagrange multiplier depending on α and Ω through the 
equation 
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Selecting a Gaussian spread (with variance 2σ  ) in the transverse 
direction and describing the localization in the remaining direction by 

( ) 22 2
1

2 z
z ez ββφ −=                    (21) 

with β is to be determined variationaly, we obtain 
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In which Io is the modified Bessel function of order zero. 

RESULTS AND DISCUSSION: 

It is clear from equation (16) that the energy differs from that of the strong 
coupling regime, given by equation (9), by the additive term λ through 
which the adiabatic theory goes over to the weak coupling regime. For large 
values of the coupling constant α, )(and)( βσ κκ RS  defined by 
equation (24) both approach unity and hence 0→λ  Consequently the 
strong coupling limit is readily obtained. For small α however the role of λ 
becomes very prominent and the polaron binding is dominantly determined 
by this term. 

It is worthy knowing that, restricting the electron charge fluctuations to be 
just on the surface, the present model conforms to that for strictly two-
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dimensional magnetopolaron [11]. Imposing an infinitely  large value for β 
in equation (21), the strong coupling ground state energy simplifies to 

( ) 12
4
12

2
−− Ω+= ασπσσgE .                  (28) 

For strong coupling and weak magnetic field ( )12 〈〈Ω α  , the dominant 
contribution come from the first and the third terms in equation (28). 
Minimization of the dominant part gives 

( ) ⎥⎦
⎤

⎢⎣
⎡ Ω−−=

222 21
8

πααπ
gE                   (29) 

Which is the two-dimensional analogue of the corresponding bulk value 
[12]. 
In order to find an optimization for the energy in equation (16) in the 

overall range of the magnetic field one requires numerical techniques. 
Figure (1) shows the dependence of the binding energy ( )Ω−= 2

1
gb EE  

on α using the strong coupling and the extended theories disregarding the 
magnetic field effect. To show the effect of the magnetic field on the 
problem, figure (2) represents the binding energy as a function of α for for 

4=Ω  From the two figures it is concluded that the two theories are in 
close quantitative agreement for large values of α Furthermore, in spite of 
small values of α, the problem show up a pseudo strong coupling 
counterpart at high magnetic fields. For  1=α  the discrepancies between 
the two theories are found to be 55% and 27% for 0=Ω  and 4=Ω  
respectively. The corresponding percentages for 10=α  are 17% and 7%. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

The ground state energy of … 
  

 245

0.001

0.01

0.1

1

10

1 10 100

 

α  
Figure 1.  The binding energy as a function of α with zero magnetic 

field. The solid and the dashed lines corresponding to the strong 
coupling and the extended theories, respectively. 
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Figure 2.  The binding energy as a function of α with Ω=4. The solid 
and the dashed lines corresponding to the strong coupling and the 

extended theories, respectively. 
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CONCLUSION: 

The present work retrieves the problem of an exterior surface polaron 
under the effect of an external magnetic field using a variational procedure 
intended to be valid for the overall range of the coupling constant. In spite 
of small α, the problem show up a pseudo strong coupling counterpart at 
high magnetic field 
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