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ABSTRACT

Interaction with external time-dependent fields in low-dimensional
systems leads in many cases to completely new phenomena of electronic
transport. Dealing with a driven system, its quantum dynamics is adequately
analyzed in terms of the Floquet or quasienergy spectrum.

In this paper, we extend the effective mass model to the case of
different effective masses for different materials in a heterostructure. For
this case we present a general method which allows us to treat a time
modulated potential acting upon a quantum well structure.

We extend the work of Wenjun Li and L. E. Reichl, [1], and consider
the case of a multilayer composed of different materials, assuming the
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effective mass in the layers I, I and III have the values m, ,m,, and m,,

respectively.

Within the framework of the Floquet states approach we have
generalized the concept of the a position-dependent-effective-mass (PDEM)
of a heterostructure. We present a method of calculating transport
properties, in particular, transmission coefficient of nanostructures by using
the scattering matrix in the framework of Floquet theory. The recursive
Floquet S matrix technique is quite a simple but powerful way of calculating
the transmission properties for mesoscopic systems

Keywords: quasienergy spectrum , effective mass, scattering matrix ,
Floquet states, transmission coefficient

INTRODUCTION:

In recent years, tunneling through time periodically driven potential
barriers has been intensively investigated, both theoretically [2] and
experimentally on quantum dots [3], and on superlattices [4-7]. These
studies renewed the interest in photon—assisted transport in semiconductor
nanostructures. The possibility to investigate experimentally time—
dependent transport through mesoscopic systems has opened the way to a
deeper understanding of new effects strongly relying on the spatiotemporal
coherence of electronic states. Moreover [8], in most time—dependent
experiments like electron pumps, photon—assisted—tunneling, and lasers
require an analysis going beyond the linear response theory in the external
frequency. Thus, many efforts have been devoted, in last years, to the
theoretical investigation of nonlinearities in semiconductor nanostructures,
electronic correlations, and screening of ac fields.

There has been attracted attention of physicists in the analytical solutions
of the one dimensional Schrédinger equation with a time-dependent linear
potential [9-12]. In order to calculate the transmission, many methods have
been developed over the past few years. On the one hand, tight-binding-like
techniques [13], have been applied satisfactorily in many problems,
especially, in those including disorder [14]. On the other hand, mode-
matching methods have been used in problems like those of disorder-free
electron waveguides. One-dimensional periodic structures have been also
studied with this technique [15]. Similar approaches have been used to study
photo-assisted effects in the tunneling through quantum point contacts [16]
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and driven quantum wells [17]. Basically, the frequency of the driving field
has been shown to produce sidebands due to the non-linearity of the current-
voltage characteristics.

Shirley [18] also used the Floquet’s theorem to develop a general
formalism for treating periodically driven quantum systems. Using this
formalism, which replaces the solution of the time-dependent Schrédinger
equation with the solution of a time-independent Schrodinger equation
represented by an infinite matrix, he obtained closed expressions for time-
average resonance transition probabilities of a strongly-driven two-level
system. More recently, a variety of approaches have been proposed to deal
analytically with strongly driven two-level systems [19-25]. Three- and
four-level systems driven by intense laser fields has also been treated
analytically [26,27]. In all of these works, interaction between the electrons
has been neglected.

Electrons interacting with a time-dependent potential [28] can gain or loss
energy and thus the electron system has no stationary states and, in
particular, there is no stationary ground state. However if the external
potential is periodic in time we can describe the state of a system using the
Floquet function [1,18,28,29] which is a superposition of wave functions
with energies shifted by n#® (here n is an integer; @ is the frequency of the
driving potential). The existence of many components (side bands) of a
wave function has a strong effect on the properties of a mesoscopic system.
For instance, side bands open up additional channels for transmission
through the mesoscopic system - photon assisted transmission [1,29]. The
existence of side bands is also a necessary condition for pumping charge
through an unbiased mesoscopic sample [31].

One of the interesting features of localized time-periodic potentials is the
presence of resonances or quasi-bound “states”, which could be thought of
as electrons dynamically trapped by the oscillating potential. This is also a
feature common to all multi-channel quantum scattering problems [31,32].
The most common method of fabricating low-dimensional structures is by
“growing” compositionally graded semiconductor alloys in high-vacuum
molecular beam epitaxy (MBE) machines. Structures that confine electrons
are made by changing the aluminum fraction ¢ during crystal growth,
leading to a compositionally graded alloy of the form A4/, Ga, . As ,

where ¢ varies spatially. The resulting band structure variation produces a
spatially varying conduction band minimum. Hence, an electron added to
the conduction band through doping, optical excitation, or electrical
injection, sees a position-dependent potential. By varying ¢ appropriately,
one can engineer confining potentials that restrict electron motion to fewer
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than three dimensions. In practice, however, it is possible to vary c¢ in one
direction only, resulting in, at best, a two-dimensional system.
In recent times, the concept of a position-dependent-effective-mass (PDEM)
quantum Hamiltonian is rapidly gaining acceptance because of its increasing
relevance in describing the motion of electrons in problems of
compositionally graded crystals [33], following the ability to fabricate
semiconductor nanostructures), quantum dots [34], liquid crystals [35], etc..
The appearance of PDEM is also well known in the energy density
functional approach to the nuclear many-body problem [36] and its
applications [37,38] in the context of nonlocal terms of the accompanying
potential. Other theoretical considerations where PDEM have been
exploited include the derivation [39] of the underlying electron Hamiltonian
from instantaneous Galilean invariance and implementation of the path
integral techniques [40] to calculate the Green’s function [41] for step and
rectangular-barrier potentials and masses. Further, PDEM has proved to be
appealing in the construction of acceptable quantum mechanical systems by
seeking exact solutions of the Schrodinger equation [42-50] by extending
the already existing methods of spectrum generating or potential algebras
[51] and those of supersymmetric quantum mechanics [52-55]. more
recently, in BEC’s, in quantum computation and spintronics.

In this paper, we extend the effective mass model to the case of different
effective masses for different materials in a finite multilayer. In the case of a

multilayer composed of different materials, the effective mass m " (x) can

. . * * * . .
be a step function assuming the values m, ,m, and m, respectively in the

layer 7, II and 1.

The proposed Hamiltonian is periodic in time with period 27 /@ . Hence, a
Floquet approach can be used. Any solution of the time-dependent
Schrédinger equation can be expanded as a linear combination of time-
periodic states - called Floquet states of the system - with coefficients
oscillating in time as exp(—iE;t) where E; is called the quasi-energy of the
Floquet state.

Floquet Scattering :

We regard the situation as sketched in FIG. 1 but we consider the regions I,
I & 111 have the effective masses 4, , u, and u,, respectively. The height

of the potential barrier, extending from —L/2 to L/2 is V), subject to the
harmonic driving force ¥V, cos(w?) as given by Eq.(1):
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FIG.1. Floquet scattering model. Incoming and outgoing channels have
energy spacing of #e and are divided into Floquet zones according to
E, =E0 +nho, [n G[0,00)] .

The Schrodinger equation can be written as:

2 o2
PRRPACT NN Sl A€ IR 2

By the Floquet theorem the solution of the time-dependent Schrodinger
equation could be converted into a time-independent eigenvalue problem.
Accordingly the solution of Eq.(2) takes the form:

- 1'EFt/ h
yF(X, H=e f(x,0), 3)
where E, is the Floquet eigenenergy and f(x,¢) is a periodic function , i.e.
f(x,0)= f(x,t+ T), with period T=2p/ w. Differentiating Eq.(3) once
and twice with respect to time and x respectively, from which we
substitute into the Schrodinger equation, finally we get:
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h2 927(x, 0

Epfxn=- 2 P RGN

ﬂXz 9¢ (4)

In order to solve the above equation we have to match the wave functions
at the boundaries of our system which consists of three regions denoted by I,
I, and III respectively.

Floguet Solution Inside The Oscillting Potential

Solving Eq.(4) by the separation of variables method, so we can write
f(x,0)= gx)f(t). The potential takes the form given by Eq.(1) inside the
oscillating region. Substitute into Eq.(4), dividing by g(x)f(#) and collecting
the same variables together ,we get:

h” 1 ﬂzg(x) V - 1 ﬂfU)JrVCoswz‘

AR T C R TR O T

F

@O0

Since each term has only a one variable dependent, then it will be equal to
a constant £ . Where we get an equation for g(x):

h? 1%4(x) _
ST X2X + Vya(x) = Egx), (5)

Another equation for £{7), leads to:

zh%- Vi cos wt fi6)= (E- E )0, ©6)

To integrate Eq.(6), we follow the same procedure as before in the

preceding chapter, then we have:

Ab) = e

- 1(E- E_)t/'h 1V,
( F) expE— ﬁsmwt (7")

Now since ¢- 251G = y J (2119 | then the last equation can be

written as:
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-H(E- E )t/h ¥ |20

ft)= e F ey Jn(ﬁ)e mwt (7)
Since f{t)= At+ T), Eq.(7) requires that £ = EF + mhw, where m is an

integer. Eq.(5) can be written in a more compact form as:

g x)+ g g(x) = 0
Which has the solution:
¥ . _ .

= oo (am e'Im* 4 p e 1Im*y (8)

Where a,, and by, are constant coefficients can be determined by the

boundary conditions as well as £ ., and if we use the fact that

E=EFE rt mhw, the g, equation will be given by:

%
2m
qmz\/ Il (F  + mhw- V )

Combining the solutions for f{f)and g(x), to get the expression for the
Floquet state inside the oscillating region y” (x0):

it "F L g g, e (1o

=¥ =¥

Floguet Solution Outside The Oscillting Potential:

The wave function outside the barrier consists of many Floquet sidebands
with energy spacing hw. The wave function in these regions is a
superposition of an infinite number of these sidebands, and can be written in
regions I and II respectively as:

. . ] _ . _ . ] _ . N
EA}) eIkHX 1E,t/h +Age 1k} x IEHt/hé (11)

¥
I/ _
X, )= ®
yi %0 n=- ¥
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¥ c o i 7 1200
_y[][(X,t): X EBIIIG' IkI] X IEHt/h+BgeI](H X IEnf/h : (12)
n=-

Ml

Where A}J' and Bé are the probability amplitudes of the incoming waves

from the left and right, respectively, while A9 and B9 are those of the
outgoing waves and:

* *
I PEn o PP
/) h2 > h2

The Floquet S Matrix:

The wave function y(x,7) and its derivative must be continuous at the
boundaries x==xL/2. Firstly at x=-1L

ylx=-L4.0=yll(x=- L4

2 s

c

¥ ) EA,}- - ik§ L) 2- iEqt/h | Agefk,{u 2 iByt/ by
n—=- =

n bmezqu/ 23

-1E t/h ¥ ¥ 1
- myy)

e F A _aba,
n=-¥ m—-%¥%

& igg, L/ 2 & nw

Equating the terms under the summation over n in both sides. On the RHS

- (E_ +tohwt/h  _
the ¢ exponent term could be collected as e ( F " =e IEpt/h ,

which will be cancelled with the same term on the LHS, and finally we get:

R I WL LT e ML D)

And for the first derivative

D la=-r2n_ 1 wHa=-1/20
* Tx * Ix
T iy
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¥ .o . _ .
L* X EI'HA}#«’ ikhL] 2 iEpt/h . KL/ 2- iF, t/h:
n—-¥ =
v
- iEt/h
e F ¥

*

- 1qu/2_ qu/ 2— 1 - nwt
n}[ H_m g)%ﬂa IQI]][%He ( )

The ¢ exponent term could be collected and cancelled with the same term
on the LHS to have finally:

Ké% 1](1L/2 0 II(I‘;L/ 2?1:

3 - Ape
T ! 14
¥ -Gyl 2 Iqu/Z_ " (9
”}TUF y Im@nf b I m,)
7

Similarly for the second boundary condition leads to:
atx= L/2 , _y][[(X: %,t)z _y[[(X: %,t)

o JKHTLI2- [Eqt/h+_

¥ EB - Ik[][L/ 2- iE, t/h
Bﬂe

11=— ¥ =

-iE_t/'h ¥
o OF éam quL/Z by - 1gm L/ 2:] m( 1) _ inwt
n=-¥ m=-¥%

Giving:

Tl . ¥ i np . |4
e W2 g2 L G e %y, D as)

And for the other first derivative, we have:

1 Yy x=1r/20_ 1 57 (x=1/20

iy My
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1 ¥
ey

Ty

I‘Ihl\

g e - iITL) 2- iEt/h v il o KL 2- Byt

- IEFf/h
LN T 2 L Ly it

* 11=¥m:¥

/4

Equating the terms under the summation over n in both sides and
canceling the exponent terms on both sides leads to:

¢ .l T /o1
I(IH*_% BII1€ I](Ig L/2+ Bg@]](lg L/2°=
T ® o (16)
¥ gl 2 - 1g L 2

‘]mg? It - bye - “n- T 1

_— 0
* ne- ¥

T

Multiply Eq.(13) by ](é and add it to Eq.(14), the result is:
m

Eoi-idnr_ ¥ S g o gt g2 S
Moge Mt2o L G 2 gy S 2 q’f’fnm( (7
g : oy s o
117
And multiply Eq.(15) by and subtract Eq.(16) from the result, yields:
m
117
g 17 : !
; me"‘]mmg‘é Gt
* * 1oL
(/A vy ¢ o1/ Vv
ki i g L2 ¥ T (L), (18)
E g / 28k :
1 dn=
by % o
: T

Combine Eq.(17) and Eq.(18) by adding and subtracting, we get the
following matrix equation:
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-fIIII

[ IKGLI2 Il i - IJJUL/z
2§g[ A€ [[[k] Bje

(19)
17 + n- Iqu/ 2
%?,kj + G~ gk A€
¥ ; Vl
m=b- y i n- m(h_W)’
. Wignl/2
§2’m  Gmm* gk - G € "
v '—11(1 /2 '—IY%HL/Zi_
2§g1AIII ¢ - 81yBne i
7 - gl 2
1 - 1 - u - ,
v §?1+ Gt %g[[[+ qm;%he , Vl (19
=¥ f / - h_VI)
17 2
§?fn G 7 It timt

1
and g[[[ &rrrkn

Expressions for the probability amplitudes of the outgoing waves are taken
from Eq.(13) and Eq.(15), and are given by:

Where g'[ =g [k[

L= o r ’q”’uzwﬁ’qﬂm” B2, o)) A M o)

B . Gt +fme’%"m w2, %)-B»’;é”"]’[&, 1)

Now we will work on the last five numbered equations. First trying to put it
in a more compact form and rewrite Eq.(17) & Eq.(18) as follow:

¢ - ig,L/2 gL/ 20 Vi -2
gz[ame Gl +b1%equ }]JH_ m(h—}y)=2(gkn)[e AL (22)

Q,,111 T2 1l a2 m(h L) gt S22 (o3
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Multiply Eq.(22) by a7/ & Eq.(23) by a?, to have:

. - . \ 1% - .
%HI al, anf 1l 2 + 2l pl, l%ﬁel%l/ 2}1] " m(h_}) =111 (gkn)[e I[%L/ 2/41’1
i1

&

€
& iqLl 2 - gL/ 21 " - ik 2
G! b1 3, b/ 2, o1 1My 5 Gt T h_iv)z 2al (gk,)! e Hi "L 2t
€

We will add these two equations and subtract them respectively. First by
addition, after simplifications, we have:

. T . 1%
§111316 1gml/ + GE‘I%L/ (@m* byy)- 2 (am- [31])i In- m(h_l -
it a S
b/ !
Sy @ 4+ " By

As we have assumed:
oA 1T
I, 1]16- 1[(5 L/?2

G[’[][ = 2(gk11)
7 - 1]( L/2
G] Ifldl Vi/g Asgky)“e
_ 11 ; 1]([][L/ 2
Sy 1 = A8k)
And
e= b - ¢, . 2= gl k- ST (25)
‘7][[[7[ =(g [][+ ‘]m)(g e qln) > 3]b[ 17— (g [+ Qm)(g T Qm)
:(g[g[][' qIZn)+qI22(g[' g[[[)’ :(g]g[]]' Q;Zn)' qln(g[' g[[[)
=(et 2 ) =(e- 2

Secondly by subtraction, we get:
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. . |4
;;‘111 ale W 2 g i dI 22 al oy + 3111171%% T ol h_lv):

Vi Ini ;=
llllé‘a Ad Tr 2 B}JG}H,F

Finally yields:

2
gm 1 gy !

fe

. <\ . . V
o/t 2;13121‘ b+ g 2(3111 * %); Tn m(h_lt) B
(26)

1
1 117 ég A;’ LI 3’17 1[],1 =
Combining Eq.(24) & Eq.(26) in the following matrix equation, we have:

%%H[a[e_ Igpl/2 w’%ﬂ (3 i%)mze%ﬁz(amm@n)i]& m(hve_
(27)

1l 4 7
G 4t 2 Byd I

Similarly, multiplying Eq.(22) by 6!11& Eq.(23) by 5! to obtain:

q;” alayg ot 2 ol Sl 21 - f L u) 20l (gl 6 2 4

Qb[b[H 1G,L/ 2 v pla 1]]1}113 Igg,L/ 21 ]11— m(hKL): ) b]( g]%)]][e- 1]917]1L/ 2 BIIJ

And make the same operations as before, by addition, we have:

;—%1%[/2+b1b[]11%[/2u B 7 - igyl/2 (a,,- Z}n)?JH'Ah[/{)_
) (28)
17 -
G[,I][éb[ 4dl ™ o By,
And by subtraction, we get:
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R O R e S

(29)
/4
[ /4 éb[ A’II ya// B’I7 [][,l —’
Combining Eq.(28) & Eq.(29) in the following matrix equation as:
bl s . \ o . V
% “pf/2, b[bmel%pz%%amil}])- x Khﬁza ' n{h—lvg=
€ a t
(30)

St At =Y Bty o

The four equations represented by Eq.(27) & Eq.(30) can be combined into
two expressions and finally to one general formula. First adding the upper
halves of Eq.(27) & Eq.(30), and then adding the lower halves separately,
we get the two following expressions as:

sil . \
§g111 Ly o6 9mt 24 (o ol + 9 9mt 2y 1y
¢ il V

5 I]— m(hW

A2 Sy by

(31)

I ]I 7
GUI[g +ollh4, Gt @ +o1\Bld 1111’

and

sii ' ‘

€ a

5
Jn- m(ﬁ) -

+Zgﬁz-qu/2 - igyL/ 2:( a0+ by)

. Il I phgig. B
Gllllg + b ahd b= (@ F 60 Badpyy g
(32)
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Finally combining the last two equations we get the following general
matrix formula:

Gl . . . i
% 2Tl o1+ o 19mb' 2 o (pl plIT 4 o m 20t
5 R

5

u

"
ne mh) ™
géiqu/ 2 + e 1gy, L/ 25(:%

Gy ypdaltl + !4l g,

I I\ni u
1,111 § gt @ T 0By

1153
(33)

By the matrix format we introduce the matrices whose matrix elements are
defined as follows, thereafter the Floquet S matrix can be constructed.

(ME ) = %afam + o 4mb2 o (ol plIT 1 olmL! 2};1112_ m(h%)’ (34)

€

M) = e Ky TN 0 2, (35)

- kL2
M), = el kg™ e a2 g, e (36)

>

+ - iklxtq)L/2 V]
(ME g = & M= amt 2y, (7)
+ _ - ik g, )L/ 2 4]
(ME,, Vpm = € To- mGh), (38)
- ik
M)y = & g, (39)
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I
M) = & 2y (40)
L. 7 <\ V
(F Y = 2/ ImH 2 & T 2, (41)
g a h
Eq. (33)can be written as:
ME . CF mxt ™= ML Al + M Bl (42)

From the above equation we will determine the coefficient vector C* by
some algebra. First eliminating the coefficient C~ by multiply Eq.(43) by
(x') " and Eq.(44) by (M) ' and then adding the outturn:

MS.ct - X e = ML al+ M Bl (43)
M,.C +x .t =ML Al M Bl (44)
L5 LM+ v Lot = I vy I
u u

§X+ )— 1M1[~[[- (Ma )— 1M£[[:BI

Taking M | and M " outside the brackets we get:

§X+ y IMb oy Ly zb+ . §X+ y v,y IEM{A'+

§X+)- 1_ (Ma)- llAlM{][.BI

And in a more compact form:

¥ ct =1t MLa+ 1L MU B, (45)

Where

¥, =GNy Mg gy L (46)
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And

LY =Gy Te vy L (47)
Multiply both sides of equation Eq.(45) by the inverse of the matrix N, to
get:

+_y- Iyt vl afe - 1p- vl gi
cr=y litmlia+y i, MY B

And finally the reduced equation to the simple form is:

ct =ut MLA"+ o, M B, (48)
where
£ _y- Iy +
H =¥ 'LT, (49)

Similarly, we will eliminate C*and calculate C~. Multiply Eq.(43) by
(M!) ' and Eq.(44) by (x ) ' and subtracting the emergents to get:

iy Ivg, + vy It o - §X y Il oy l.M{gA’-

Loy Ivffe gy v
Taking M and M " outside the brackets we get:
gx' y Img + oy Wi = gx y Loy v A
u u

L0 vy Bmf B
u

And in a more compact form as:

y_C =L MLA- LT M Bl (50)

Where
¥oo= () Mg + oy IxT, (51)
LE =y leavfy |, (52)
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Multiply both sides of equation (50) by the inverse of the matrix N_ to
have:
c =yl mla y 1Lt M B

And finally it takes the form:

Cc =H: MLal- ut M gl (53)
Where
HE =y ILF, (54)

Combining Eq.(48) and Eq.(53) in a one general formula as:

c* = HE M[L.A'+ HWM B, (55)
Where
TR s i
Hy =%, Ly
¥, =GRy Ivg s oapy L (56)

Ly =y teoufy !

The Floquet sideband coefficient vectors are then given by:

I LIS -2 11 pi I Al ot I i
a—E(C +C )—§§{+Mﬂ4 + H, MZ B!+ I MEAT - HT ME: B

ot - B - tu
+ H: : - H. ;
4= ghT: MLA+ ?;{*T: M pI, (57)
il & il

And

b= %(CJ’ -C )= %gﬂ MA+1 M B v MLA -+ M B’E

198



Z. Al-Sahhar et al., J. Al-Agsa Unv., 10 (S.E) 2006

—
- H:
b gﬂe—+ MLAT+ gH;—+ M1 Bl (58)

A A

u u

Eq.(20) and Eq.(21) can now be rewritten in the matrix form:

A% = Mt a+ M b M{ Al

cr?™ Mer
ST+ HD S L :
N et e M[A+
ot B i o B i NI
Mer g, . g S Mer 91+ H - M
8% MU s §+T MU i
£& o = 5 a N
+ gk gl + - ut e
M L HD M+ My 3T, - B M+
A0= % J s .A1'+% B
N A + i glIT
My, $ - H A - 2 My, §1, + HF i)
=M, A.A1'+ M, B.Bf, (59)
and
0 - + 1l pi
B =Meypat+ Meypb- Mi7.B
T ot u =
T H, - H =
= <t ’ =
T .. +=
: I At
VI L SV
B - Nanrg MO
: LY 1 :
: Z 2 o s
= % ﬁ =
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i Gl ; + i 41T
N 50+ H M+ My 88, - HOIME
1 1 :
B = -2
2F ¢ A 2 B
I R T +og KR/ P/ |
My, - B ﬁM{ My 40+ H ﬁM£ QMI[
0 _ 1 7
BO=Mp A+ Mpp B, (60)

Combining Eq.(59) and Eq.(60), we obtain:
(Aoj (MAA MAB] - 1)
0 = . 2
B~) \Mpy Mppg )\ B’
4°) (4!
o)
B B!
Where A',B' andA°,B°are the incoming and outgoing amplitude
vectors, respectively. The matrix S consists of all the probability amplitudes
which connect the coefficients A’,B’' to coefficients A4°,B°. Each

element S,,, of the matrix S gives the probability amplitude that the electron
is scattered from Floquet sideband m to sideband n |:nm = (—oo,oo)]. If we

only keep the propagating modes [nm e(O,oo):I, then we obtain the

scattering matrix S, which satisfies the equation

1) (4
=S| (63)
B Bl
The transmission and reflection amplitudes for the propagating modes #,,
and r,, which determine the scattering matrix S are as follows:
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Where t,,, and r,,, are for propagating modes incident from the left; ¢',,, and
r',m are similar quantities for modes incident from the right.
The total transmission coefficient can be obtained from the scattering matrix
by the formula:

2

(65)

0 o0 k
r-y sk,
n=0m=0 k m
The S-matrix is the most fundamental tool for analyzing quantum scattering
phenomena in various fields of physics, providing with the most complete

scattering data [6,8,37].

CONCLUSIONS:

In this paper, we extend the work of Wenjun Li and L. E. Reichl, reference
[1] and by allowing a time modulated potential to act upon the quantum well
structure with different effective masses on the regions beside the square
well.

In conclusion, within the framework of the Floquet states approach we
have extended the concept of the a position-dependent-effective-mass
(PDEM) of a heterostructure and present a method of calculating transport
properties, in particular, transmission coefficient of nanostructures using the
scattering matrix in the framework of Floquet theory. The recursive Floquet
S matrix technique is quite a simple but powerful way of calculating the
transmission properties for mesoscopic systems.

Since the finite parabolic quantum well has wide applications the present
work is valuable for the understanding of the designing for the cases where
the structure is used, especially, for the optical density spectrum in electro -
optical modulators.
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