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HABC: Hybridizing artificial bee colony with g-hill climbing
optimizer for solving non-convex economic load dispatch
problem
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Abstract

In power systems, economic load dispatch (ELD) problem is tackled by
rescheduling the power outcomes of the generation units to minimized the
fuel cost consumption. ELD is formulated as an optimization problem
which is tackled by several optimization methods. In this paper, ELD is
tackled by a hybrid artificial bee colony (HABC). Artificial bee colony, an
efficient optimization method, has a chronic shortcoming in improvisation
equation of employed and onlooker bees operators. In HABC, the onlooker
bee operator is replaced by the g-hill climbing optimizer as new operator to
empower its exploitation capability. HABC is evaluated using two different
ELD problems with thirteen generating units, and one problem with forty
generating units. The effect of the different parameter settings on the
behavior of HABC is tested using nine experimental scenarios. The
experimental results demonstrate that HABC is able to achieve the second
best results for the three ELD problems.

1. Introduction

Recently, economic load dispatch (ELD) problem aroused the attention
of research communities in the power system. In ELD, the main objective is
to achieve the predefined power output obtained from the active generating
units in the system with minimum fuel costs. This is done in accordance
with satisfying equality and inequality constraints. The power balance is
represented as the quality constraints, while the power output is represented
as the inequality constraints. In the previous era, the traditional calculus-
based optimization methods are proposed to solve ELD problems. Examples
include gradient-based method (Dodu et al., 1972); linear programming
algorithm (Jabr et al., 2000); non-linear programming algorithm (Nanda et
al., 1994); quadratic programming (Coelho and Mariani, 2006); and
lagrangian relaxation algorithm (El-Keib et al., 1994). Indeed, this method
can be very efficient in solving the problem with low dimensionality.
However, in large-dimensional ELD instances, this kind of method is
impractical due to the fact that ELD is classified as a non-convex and highly
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non-linear optimization problem, and thus cannot lend itself to be solved
easily by the traditional methods.

Metaheuristic-based method is the most efficient approach proposed for
the ELD problems. This is because the method have the ability to solve
complex problems with reasonable computational time (Blum and Roli,
2003). The common capability of any metaheuristic-based method resides in
its power in exploring the unvisited region of the search space (exploration)
and exploiting the accumulative search (exploitation). Balance between the
exploration and the exploitation is the key success of seeking for the optimal
solution. Conventionally, metaheuristic-based method could be classified
into two main categories: local search-based, and population-based methods
(Hussain et al., 2018).

Local search methods are initiated with one random solution. This
solution is iteratively changed based on neighboring search process to come
up with a new neighboring solution. The neighboring solution replaces the
current one, if better, and this process is terminated as the local minima is
achieved. Note that the exploitation is bias feature of the local-search based
methods. There are many local search-based methods that have been used to
solve ELD. This include: simulated annealing (Zhang et al., 2015), tabu
search (Lin et al., 2002), GRASP (Neto et al., 2017), and g-hill climbing
(Al-Betar et al., 2018).

Population-based algorithms are normally initiated with a set of
solutions. The properties of these solutions are exchanged using learning
processes controlled by specific extreme values until a (premature) optimal
solution is reached. It is worthy of notice that the population-based methods
is bias to towards exploration. In general, the population-based methods can
be further subdivided into evolutionary computation-based methods (EC)
and swarm intelligence-based methods (SI) (BoussaiD et al., 2013). EC
algorithm is inspired by utilizing Darwin's principle of natural selection (i.e.,
survival of the fittest), whereas Sl algorithm, which is like the one used in
this study, is mostly inspired by the animal behaviors on seeking food or
hunting process. Some of the examples of EC algorithm utilized for solving
ELD problems are genetic algorithm (Shang et al., 2017); harmony search
(dos Santos Coelho and Mariani, 2009); and evolutionary algorithm (Sinha
et al., 2003), while the SI method employed for ELD problems include krill
herd algorithm (Mandal et al., 2014), cuckoo search algorithm (Afzalan and
Joorabian, 2015); bacterial foraging optimisation (Panigrahi and Pandi,
2008); firefly algorithm(Yang et al., 2012); ant colony algorithm (Pothiya et
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al., 2010); and particle swarm optimization (Selvakumar and Thanushkodi,
2007).

The Atrtificial Bee Colony (ABC) is a class of Sl algorithm is proposed
by Karaboga in 2005 (Karaboga, 2005). Due to its simplicity, flexibility,
and robustness, ABC have been implemented to solve many optimization
problems like nurse rostering problem (Awadallah et al., 2015), university
timetabling (Bolaji et al., 2014), job-shop scheduling (Sundar et al., 2017),
multi-threshold  segmentation(Diaz-Cortés et al.,, 2017), knapsack
problem(He et al., 2018), and others reported in (Akay and Karaboga, 2015,
Bolaji et al., 2013, Karaboga et al., 2014). ABC suffers from shortcomings
such as i) it easy to get stuck in local optima; ii) very slow when applied to
solve hard problems, due to the high number of fitness evaluations at each
iteration; and iii) the search equation of the employee and onlooker bees
operators is poor in exploitation and good in exploration (Ab Wahab et al.,
2015, Bolaji et al., 2013, Gao et al., 2012). Multiple versions of ABC have
been proposed in order to bridge these shortcomings (Awadallah et al.,
2015, Gao et al., 2012, He et al., 2018, Zhong et al., 2017).

In this paper, a hybrid version of ABC algorithm is proposed for solving
the ELD problems, called HABC. In HABC, the following contributions are
utilized:

e The g-hill climbing optimizer is replaced the functionality of the
onlooker bee operator of the ABC algorithm in order to empower
its exploitation capability, called HABC.

e The g-hill climbing rate (BHCR) is suggested as a control
parameter to determine the percentage of using g-hill climbing
optimizer in ABC algorithm.

e The HABC is experimentally evaluated using three non-convex
ELD systems with diverse complexities and characteristics: two
different ELD problems with thirteen generating units, and one
problem with forty generating units.

e The sensitivity analysis step of HABC is studied to show the
impact of its control parameters on its convergence behavior.

e The comparative evaluation for HABC concur that it achieves
superior results when it compares with the available state of the
art methods using the same ELD problems.
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The paper is organized as follow: Section 2 presents the formulation of
the ELD problem. Section 3 describes the different steps of the proposed
HABC algorithm used to solve the ELD problem. Experimental results and
analysis are provided in Section 4. Finally, conclusions and some future
directions are summarized in Section 5.

2. ELD problem formulation

The Economic load dispatch (ELD) problem is defined as the process of
allocating generation levels to be generated by each active generating units
in the system. The main objective is to minimize the fuel cost of the
generating units for a specific period of operations subject to satisfying the
quality and inequality constraints. Generally, the ELD can be formulated as:

Minimize Fp= XX, F.(P.) (1)
Where Fr is the total production cost in $/hr; N is the total number of active

generating units included in the system; and Fi(P;) is the fuel cost function
for the generating unit i, which is calculated using the following equation:

Fi(P)= a;+bP +c,P{ + ‘ee Siﬂ(ﬁ[Fimm - F:‘))|(2)

Where a;, b, and c; are the smooth fuel cost coefficients of the generating
unit i; ej and f; are the non-smooth fuel cost coefficients of the generating
unit i; P; is the electrical output power of generating unit i in MW, and
P™is the minimum generating limit of generating unit i.

The solution of the ELD problem is subjected to the following constraints:
1. Quality constraint (Power balance constraint):

Elepz':FD‘i'PL (3)
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Where Pp is the total load demand in MW; P is the total transmission
losses in the system in MW. It should be noted that the total
transmission losses P, is computed using B-coefficients as follows:

P, = E:zlzjzi P.B;FP; + Ef:i P.Byy + Byy(4)

iYij

2. Inequality constraint (Power generation limits):
mem £ Pf E meﬂx (5)

The output power (MW) of each generating unit i shall be within their
minimum limit 2/"and maximum limitP"**.

It is worth to mention that, the system transmission losses will be ignored
for all the test cases considered in this research as the others (Al-Betar et al.,
2018, Al-Betar et al., 2016a, Al-Betar et al., 2016b).

3. The proposed Method

In this section, the hybridization of ABC algorithm with g-hill climbing
optimizer for tacking the non-convex ELD problems is presented.

The ABC algorithm is a Sl algorithm introduced by Karaboga in 2005
(Karaboga, 2005). This algorithm simulates the intelligent foraging behavior
of a honey bee colony. In general, the honey bees in the colony is divided
into three groups based on foraging task: i) employed bees; ii) onlooker
bees; and iii) scout bees. Employed bees are responsible to collect the
nectars from the discovered food sources and transfer to the hive, as well as,
dancing in the hive in order to share the information about the food sources
with the onlooker bees in the hive. Onlooker bees are responsible to select
one of the good food sources to exploit. Finally, the scout bees are
responsible to discover new food sources randomly. In optimization terms,
the employed and onlooker bees are the source of exploitation capability by
exploiting the discovered food sources, while the scout bees is the source of
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the exploration capability by visiting new food source randomly. The
procedural steps of the proposed HABC for ELD is illustrated in Figure 1,
while the description of these steps are given below:

3.1 Initialize the parameters

In this step, the four parameters of the proposed HABC are initialized
which includes:

- Solution Number (SN) represents the number of solutions (i.e., food

sources) in the population.

- Maximum cycle number (MCN) reflects the maximum number of
generations.

- limit represents the certain number of generations which is used to
abandon the exhausted food source in the population.

- p-hill climbing rate (SHCR) refers to the rate of calling the g-hill
climbing optimizer in order to enhance the desired food source,
where its value between 0 and 1.

Similarly, the representation of the solutions, as well as, the cost function
(see Eq. (1)) are initialized. Furthermore, the different parameters of the
ELD problem, which are mentioned in Section 2, are extracted from the
dataset.
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Figure 1: The flowchart of the proposed HABC algorithm

3.2 Generate the food sources

In this step, the initial solutions in the population are initialized, BM= [Py,
P,, ..., Psn]T, where SN is the size of the population. Each solution Pi= {Pj1,
Pj2, P, ..., Pjn} in the population reflect one of the food sources, where N is
represents the number of active generating units in the system. These initial
solutions are randomly constructed as follows:

Py = P:'mm + (P — P:'mm:] X U(0,1) (6)

Where j € [1, SN] and ie [1, N], and U(0,1) generates a random number
between 0 and 1.

Then, simple repair procedure is triggered to ensure the feasibility of
each solution by satisfying the quality and inequality constraints. In repair
process, each generating unit Pji is check to ensure the output power
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assigned is between P™"and P/™**. If Pj; is less thanp™™or bigger
thanP™=*, then Pj; is assigned a random value between P™"and P/***. On

other hand, if the summation of the output power for all generating unit in
the system is not met the total load demand then these differences will be
added or removed from the different generating units.

Finally, each solution in the population is subjected to calculate the total
production cost using Eqg. (1).

3.3 Sending employed bees for food sources

Every food source (i.e., solution) is under the responsibility of one
employed bee, in which each employed bee modifies its current associated
solution P; to produces the neighborhood solution P;* using Eq. (7).

P_;z' = F; + ‘P(Eﬁ + Py;) (7)
Where Pj is the current associated solution; Py is other solution selected
randomly, where k must different from j; i is the position of the generating
unit to be perturbated; and ¢ is a random number between -1 and 1, that is
used to move from the current solution P; to new one P;'. It should be
noted that if the total production cost of the new solution P;" is less than that
of its current associated solution Pj, then the employed bee release the old
one P; and memorize the new solution P;' as the current associated solution.

3.4 Calculation of probability for food sources

When the employed bees complete their search using Eq. (7), each
employed bee share the information of the found food sources to the
onlooker bees. The onlooker bee chooses a food source for further search
depending on the probability. The nectar value in each food sources is used
to calculate the probability. In this step, the probability of each solution in
the population is assigned using Eq. (8), where this probability is calculated
depending on the value of the total cost production (see Eq. (1)).
Fr(Fj)

Probabiiit}{P }-) = E—ﬂ—-‘— (8)

r= Fr(Py)

Where the F1(P;) is the value of the total cost production of solution P;; SN
is the population size; and XY, Probabitity(P,) is unity.

3.5 Sending onlooker bees to food sources
9
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The onlooker bee chooses one of the fittest food sources for further search
using the same search equation of the employed bees. Likewise, if the new
solution is better than the old one, its replaces the old one in the population.

It should be noted that the search equation of employed and onlooker
bees is good in exploration and poor in exploitation (Gao et al., 2012). For
this reasons, the search equation of the onlooker bee is replaced using f-hill
climbing optimizer in order to enhance the desired solution until maximum
limit is achieved. Based on the above-mentioned shortcoming, the proposed
method is known as HABC, a new hybrid version of artificial bee colony
algorithm is proposed for solving the ELD problem.

S-hill climbing optimizer is a modified version of the simple local search
known as hill climbing algorithm, it is proposed by Al-Betar in 2017 (Al-
Betar, 2017). In this algorithm, a new intelligent operator ($-operator) is
added to the body of the algorithm in order to escape being stuck in local
optima. p-operator is similar to mutation operator in genetic algorithm,
which is the main source of randomness.

In this phase, the desired solution is passed to the pg-hill climbing
optimizer in order to find the local optima. It should be noted that the g-hill
climbing optimizer is triggered depending on g-hill climbing rate (BHCR).
The higher value of SHCR leads to higher probability of running the g-hill
climbing optimizer, and thus the higher the rate of exploitations and the
higher the CPU time.

3.6 Scout bees phase

If there exist any solution in the population that is not enhanced for a given
number of generations (as determined by limit parameter), the scout bee
replaces this abandoned solution with a new one, which is generated
randomly using Eq. (6).

3.7 Stop condition
Steps 3.3 to 3.6 are repeated until the maximum number of generations is
reached (MCN).

4. Results and discussions
The proposed HABC algorithm is used to solve ELD problems using
three different test cases in order to evaluate its performance. These test
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cases are i) 13 generating units with required load demand is 1800MW; ii)
13 generating units with required load demand is 2520MW; and iii) 40
generating units with required load demand is 10500MW.

4.1 Experimental Setup
The performance of the proposed HABC is tested using nine convergence

scenarios are provided in Table 1. These scenarios are divided into three
groups in order to study the three parameters of the proposed method.
Firstly, the SN parameter is studied using three different values (i.e., SN=10,
SN=20, and SN=30) in three different convergence scenarios (i.e., Senl,
Sen2, and Sen3). Whereas the value of the other parameters in these
scenarios are fixed like limit=SNxD and SHCR=0.05. It should be noted that
the value of the SN parameter that obtained the best results in Senl - Sen3
will be used in the following experimental scenarios.

Secondly, the next three convergence scenarios (Sen4 - Sen6) are designed
to study the effect of the limit parameter using three values (i.e.,
limit=0.5%xSNxD, limit=SNxD, and limit=2xSNxD). The value of the SHCR
parameter in these scenarios is fixed to 0.05. Again the value of the limit
parameter that achieved the best results in these scenarios will be used in the
next experiments. Finally, the last three scenarios are designed to study of
the effect SHCR parameter on the performance of the proposed algorithm.

It is worth of mentioning that the proposed HABC algorithm is
implemented using MATLAB VersionR2014b. The implemented code is
executed on Corei7machine with16 GB RAM and Microsoft windows 10as
operating system.

Table 1: Experimental scenarios used to study the behavior the
proposed HABC.

Scenario SN Limit PHCR
Senl 10 SNxD 0.05
Sen2 20

Sen3 30

Sen4 0.5xSNxD 0.05
Sen5 SNxD

11
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Sen6 2xSNxD

Sen7 0.005
Sen8 0.05
Sen9 0.5

4.2 Test System 1

This test system comprises of thirteen generating units with non-convex
cost functions. The total load demand was assumed to be 1800MW. The
generating unit data of this problem is collected form (Walters and Sheble,
1993).

The results of studying the SN parameter using three different values in
three convergence scenarios are shown in Table 2. In this table, the best
solution obtained over 25 runs for each convergence scenario is recorded.
Furthermore, as shown in this table the total cost of the best solution, the
mean of the results, as well as the standard derivations are summarized. The
best result obtained is highlighted in bold font. From Table 2, it is obvious
that the best result is obtained by Sen3, where the value of SN is the highest.
This is because the higher value of SN leads the proposed method to cover a
larger area of the problem search space and thus the probabilities to reach
better results are increased. It should be noted that the value of SN is set to
30 in the next experiments. It worth of mentioning that if SN is higher than
30 there are no much difference in the obtained results which leads to
undesirable computational time.

Table 2: Effect of SN parameter for Test System 1

Unit Senl Sen2 Sen3

01 628.3185 628.3185 628.3185
92 224.3995 224.3993 149.5814
s 148.0042 147.9598 222.8007
J4 109.8665 109.8658 109.8583
s 109.8662 109.8658 109.8522
Js 60 109.8641 60

97 109.8289 109.8602 109.8567
Js 109.8596 60 109.8657
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o 109.8565 109.8665 109.8663
O10 40 40 40

Ou 40 40 40

O12 55 55 55

013 55 55 55
Total cost($) 17,960.67 17,960.54 17,960.51
Mean Cost 17,965.53 17,963.24 17,961.62
Stdev 3.84 3.28 1.43

The results of the three convergence scenarios (Sen4 — Sen6) that are used to study the
limit parameter on this problem are provided in Table 3. This table summarizes the cost of
each generating unit in the best solution achieved, the total cost of the best solution, the
mean of the results, and the standard derivations. Again, each convergence scenario is run
25 times. The cost of the best solution obtained is highlighted in bold font.

The recorded results in Table 3 demonstrate that the performance of the proposed
HABC algorithm is affected by the varying value of limit parameter. As shown in this table,
the best results are obtained by Sen6, where the value of limit parameter is the highest.
Furthermore, the results obtained by the other scenarios (Sen4 and Sen5) are very close to
results of Sen6.

Finally, in order to show the effect of variation of the SHCR parameter
on the performance of the proposed HABC method, three convergence
scenarios are designed with three values of SHCR parameter (i.e., Sen7
(BHCR=0.005), Sen8 (SHCR=0.05), and Sen9 (BHCR=0.5)). It should be
noted that when the value of SHCR is higher, then it leads to the higher
calling of g-hill climbing algorithm and thus increase the rate of exploitation
and CPU time. Table 4 shows the comparison of the best solutions obtained
by Sen7 to Sen9. As seen in this table, the minimum total cost
($17,960.38)is obtained by Sen8, where the value of SHCR is set to 0.05.
This is because the value of SHCR parameter achieved the considerable
balance between the exploitation and exploration capabilities during the
navigation of the search space of the problem. However, the performance of
the Sen7 is the worst, this is because the value of SHCR parameter is low
and thus leads to high rate of exploration and low rate of exploitation.

Table 3: Effect of limit parameter for Test System 1
Unit Sen4 Sen5 Sen6

91 628.3185 628.3185 628.3185
13
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02 224.3993 149.5814 149.5987
Os 147.9564 222.8007 222.7538
04 60 109.8583 109.8665
Os 109.8658 109.8522 109.8665
Je 109.8667 60 109.8655
97 109.8665 109.8567 60.0000
Os 109.8644 109.8657 109.8665
9 109.8625 109.8663 109.8639
10 40 40 40
O 40 40 40
012 55 55 55
O13 55 55 55
Total cost($) 17,960.53 17,960.51 17,960.38
Mean Cost 17,962.09 17,961.62 17,961.24
Stdev 1.70 1.43 0.55

Table 4: Effect of SHCR parameter for Test System 1

Unit Sen7 Sen8 Sen9

O1 628.3184 628.3185 628.3185
02 224.0833 149.5987 149.5908
Os 148.5210 222.7538 222.7624
04 109.7881 109.8665 109.8661
Os 109.8318 109.8665 109.8654
e 60 109.8655 109.8659
97 109.8413 60 109.8651
Os 109.8025 109.8665 60

o 109.8135 109.8639 109.8657
O10 40 40 40

Ou 40 40 40

012 55 55 55

O13 55 55 55
Total cost($) 17,961.91 17,960.38 17,960.40
Mean Cost 17,987.79 17,961.24 17,960.92
Stdev 73.5498 0.55 1.36
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Figure 2 shows the box plot for the experimental results of Senl to Sen9
based on the results recorded in Tables 2 — 4 on Test System 1. It can be
seen from the figure that the distribution of the results obtained over 25 runs
for each experimental scenario. The x-axis represent the proposed
experimental scenarios, while y-axis represents the total fuel cost achieved.
Clearly, Sen9 is statistically better than the other proposed scenarios, where
the distance between the best, median, and the worst results is the smallest.
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Figure 2: Box plot for Senl — Sen9 of the proposed HABC algorithm on
Test System 1

For comparative evaluation purposes, the best result obtained by the
proposed HABC algorithm is compared with those achieved by the other
methods as shown in Table 5. The comparative methods include ABOMDE
(Lohokare et al., 2012), FCASO-SQP (Cai et al., 2012b), GA-PS-SQP
(Alsumait et al., 2010), HCASO (Cai et al., 2012b), HHS (Pandi et al.,
2011), HMAPSO (Kumar et al., 2011), HQIPSO (Chakraborty et al., 2011),
HS (dos Santos Coelho and Mariani, 2009), HIS (dos Santos Coelho and
Mariani, 2009), QIPSO (Azizipanah-Abarghooee et al., 2012), NUHS (Al-
Betar et al., 2016b), and THS (Al-Betar et al., 2016a). As shown in this
table, the proposed HABC algorithm outperforms ten out of 14 comparative
methods. However, the best results ($17,960.37) is achieved by four
comparative methods, while the proposed algorithm obtained the second
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best results ($17,960.38).This is prove that the proposed algorithm can be
able to make a right balance between the exploration and exploitation while
navigating the problem search space and thus achieve better results. Figure
3 compares the minimum fuel costs obtained by the comparative methods.

Table 5: Comparison results of Test System 1

Method Best Mean

HABC 17,960.38 17,961.24

ABOMDE 17,963.85 17,967.36

FCASO-SQP 17,964.08 18,001.96

GA-PS-SQP 17,964.00 18,199.00

HCASO 17,965.15 18,022.04

HHS 17,963.83 17,972.48

HMAPSO 17,969.31 17,969.31

HQIPSO 17,966.37 18,081.05

HS 17,965.62 17,986.56

HIS 17,960.37 17,965.42

QIPSO 17,969.01 18,075.11

NUHS 17,960.37 17,987.10

THS 17,960.37 17,977.60
HABC -
ABOMDE -
FCASO-SQP -
4 GAPS-SQP -
£ HCASO .
£ HHS -
£ HMAPSO Y
£ Harso -
e HS .
3 HIS -

QIPSO
NUHS
THS

1795 17952 17954 17956 17958 1.796 1.7962 1.7964 1.7966 1.7968 1.797
Minimum fuel cost x 10°

Figure 3: Minimum fuel cost comparison for Test System 1
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4.3 Test System 2

This system considers thirteen generating units with a load demand of
2520MW. The problem instance is reported in (Walters and Sheble, 1993).
Tables 6, 7, and 8 summarize the results of studying the performance of the
proposed method using nine convergence scenarios as provided in Table 1.
The tables 6, 7, and 8 recorded the best solution obtained by each
convergence scenario, the cost of this solution, the mean of the results over
25 runs, and the standard derivation. The best result achieved is highlighted
using bold font.

Table 6 shows the results of Senl to Sen3 that are employed to study the
effect of SN parameter using three different values (i.e., SN=10, SN=20, and
SN=30). Apparently, the performance of the three scenarios are almost
similar, where the difference on the total cost less than or equal to 0.04.
However, Sen3 where the SN parameter is 30 achieved best result, and this
value will be use in the next experimental scenarios.

Similarly, the results of studying the performance of Sen4 to Sen6 on Test System 2 are
shown in Table 7. Again, these scenarios are designed in order to study the effect of limit

parameter using varying values. The results in Table 7 clearly show the effectiveness of the
limit parameter on the performance of the proposed method, whereas Sen6 is successfully
achieved the best solution. This is proven that the SNXD is suitable threshold value of the

limit parameter to diversify the population, and this value is used in the next phase of
experiments.

Table 6: Effect of SN parameter for Test System 2

Unit Senl Sen2 Sen3

01 628.3185 628.3185 628.3185
g2 299.1938 299.1992 299.1993
O] 294.5198 294.5203 294.4938
04 159.7331 159.7328 159.7318
Os 159.7326 159.7329 159.7331
Js 159.7326 159.7331 159.7330
g7 159.7328 159.7330 159.7306
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Js 159.7329 159.7331 159.7329
9o 159.7329 159.7330 159.7323
9o 77.3895 77.3771 77.3949
i1 77.3852 77.3999 77.3999
912 92.4006 92.4001 92.4000
913 92.3959 92.3870 92.4000
Total cost($) 24,164.12 24,164.11 24,164.08
Mean Cost 24,167.92 24,165.44 24,164.89
Stdev 7.21 1.20 0.97
Table 7: Effect of limit parameter for Test System 2

Unit Sen4 Senb Sen6

01 628.3185 628.3185 628.3185
9 299.2000 299.1993 299.1991
9 294.5113 294.4938 294.5094
94 159.7253 159.7318 159.7331
9s 159.7327 159.7331 159.7313
e 159.7266 159.7330 159.7325
97 159.7327 159.7306 159.7331
Js 159.7331 159.7329 159.7331
9o 159.7308 159.7323 159.7328
910 77.3990 77.3949 77.3988
Jut 77.3990 77.3999 77.3999
12 92.3904 92.4000 92.3787
O3 92.4005 92.4000 92.3996
Total cost($) 24,164.14 24,164.08 24,164.09
Mean cost 24,164.74 24,164.89 24,164.95
Stdev 0.46 0.97 1.10

The best solutions achieved by studying the SHCR parameter
using three different values are summarized in Table 8.
Clearly, Sen& succeed to obtain the minimum total fuel cost
($24,164.08). This is proven that the 0.05 is the threshold value of the SHCR
parameter and is able to make the right balance between the
exploration and exploitation.
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Table 8: Effect of SHCR parameter for Test System 2

Unit Sen7 Sen8 Sen9

01 628.3185 628.3185 628.3185
92 299.1880 299.1993 299.1992
s 294.7467 294.4938 294.4990
94 159.7324 159.7318 159.7331
s 159.5931 159.7331 159.7330
Js 159.7339 159.7330 159.7329
97 159.7276 159.7306 159.7328
Js 159.7258 159.7329 159.7285
o 159.7324 159.7323 159.7295
J1o 77.3829 77.3949 77.3971
Ou 77.3880 77.3999 77.3970
O12 92.3743 92.4000 92.3998
013 92.3563 92.4000 92.3996
Total cost($) 24,164.69 24,164.08 24,164.09
Mean cost 24.172.47 24,164.89 24,164.36
Stdev 7.83 0.97 0.17

Figure 4 shows the box that illustrates the distribution of the results of
Senl to Sen9 on Test System 2. It can be seen from the figure that Sen9 is
statistically better than the other proposed scenarios.
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Figure 4: Box plot for Senl — Sen9 of the proposed HABC algorithm on
Test System 2

The best result obtained by the proposed HABC against those
obtained by the competitors are recorded in Table 9. In this
table, the best results obtained by the comparative methods
as well as the mean of the results are recorded. The best
results obtained are highlighted using bold font. The
comparative methods include ACO (Pothiya et al., 2010),
FCASO-SQP (Cai et al., 2012b), HCASO (Cai et al., 2012a),
HCPSO (Cai et al., 2012a), HCPSO-SQP (Cai et al., 2012a), TS
(Pothiya et al., 2010), TSA (Khamsawang and Jiriwibhakorn,
2010), NUHS (Al-Betar et al., 2016b), THS (Al-Betar et al.,
2016a), and IGWO (Mehmood and Ahmad, 2017). It can be
observed from Table 9 that the performance of HABC is
significantly better than eight out of ten comparative
methods from the literature. Clearly, the best results
($24, 164. 06) are obtained by two of the comparative methods,
while the proposed HABC is ranked second ($24,164.08). This is
clearly shows the potential of the proposed method. Figure 5
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illustrates the comparison of the results of the comparative
methods in term of the minimum fuel cost.

Table 9: Comparison results of Test System 2

Method Best Mean
HABC 24,164.08 24,164.89
ACO 24,174.39 24,211.09
FCASO-SQP 24,190.63 NA
HCASO 24,212.93 NA
HCPSO 24,211.56 NA
HCPSO-SQP 24,190.97 NA
TS 24,180.31 24,243.37
TSA 24,171.21 24,184.06
NUHS 24,164.06 24,185.61
THS 24,164.06 24,195.21
IGWO 24,202.26 24,210.00

HABC

ACO
FCASO-5QP
HCASO
HCPS0
HCPS0-5QP
T8
TSA b
NUHS
THS
IGWO

Comparative methods

2.418 2.419 2.42 2421 2.422
Minimurn fuel cost w10t

Figure 5: Minimum fuel cost comparison for Test System 2

2.415 2.416 2417

4.4 Test System 3
In order to evaluate the efficiency of the proposed method using larger
dataset, a problem instance with forty generating units is employed. The
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total expected load demand is 10500MW. The system parameters are taken
from (Sinha et al., 2003). It should be noted that, the nine convergence
scenarios provided in Table 1 are studied for this test system, and the
experimental results are summarized in Tables 10, 11, and 12. The best
results achieved are highlighted using bold numbers. Again, each
convergence scenario is repeated 25 independent runs.

The results of studying the behavior of the proposed HABC using various
values of SN parameter are recorded in Table 10. It can be seen that Senl
and Sen2 obtained the same best total cost ($121,414.64). However, the
result of Sen3 is very close to results of the other scenarios with higher
computational time. Based on above, the value of the SN parameter will be

set to 10 in the next experiments.

Table 10: Effect of SN parameter for Test System 3

Unit Senl Sen2 Sen3

01 110.7998 110.7999 110.7998
02 110.8008 110.8008 110.8003
s 97.3999 97.3999 97.3999
04 179.7331 179.7331 179.7331
s 92.7250 87.8292 92.6843
Js 140 140 140

97 259.5997 259.5997 259.5997
Os 284.5997 284.5997 284.5997
Jo 284.5997 284.5997 284.5997
J10 130 130 130

Ou 168.7998 168.7999 168.7998
O12 168.7998 168.7999 168.7998
013 214.7598 214.7598 214.7598
J14 394.2797 394.2794 394.2794
015 394.2794 394.2793 394.2794
J16 304.5196 304.5196 304.5196
O17 489.2794 489.2794 489.2794
O1s 489.2794 489.2794 489.2794
J19 511.2794 511.2794 511.2794
020 511.2794 511.2794 511.2794
g21 523.2794 523.2794 523.2794
022 523.2794 523.2794 523.2794
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023 523.2794 523.2794 523.2794
024 523.2794 523.2794 523.2794
025 523.2794 523.2794 523.2794
026 523.2794 523.2794 523.2794
27 10 10 10

O28 10 10 10

029 10 10 10

O30 87.8311 92.7277 87.8733
Oa1 190 190 190
032 190 190 190
033 190 190 190
O34 164.7999 164.7998 164.7998
Oss 164.7999 164.7999 164.7998
036 164.8002 164.7998 164.7998
37 110 110 110
O3s 110 110 110
39 110 110 110
40 511.2794 511.2794 511.2794
Total cost($) 121,414.64 121,414.64 121,414.66
Mean Cost 121,453.26 121,438.58 121,430.10
Stdev 26.23 22.26 21.99

The results obtained by Sen4 to Sen6 that are used to study the behavior
of the proposed method using various values of limit parameter as reported
in Table 11. It is observed from the results summarized in this table, Sen6
obtained the best solution, while Sen4 achieved the worst results. Which
proved that the lower value of limit parameter leads to undesirable diversify
of the population and thus achieved worst results. The value of 2xSNxD is
set for limit parameter in the next experimental scenarios.

Table 11: Effect of limit parameter for Test System 3

Unit Sen4d Senb Sen6

01 110.8013 110.7998 110.8000
02 110.8017 110.8008 110.8005
s 97.4000 97.3999 97.3999

04

179.7331

179.7331

179.7331
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Os 92.6424 92.7250 87.8213
6 140 140 140

97 259.5997 259.5997 259.5997
Os 284.5998 284.5997 284.5997
o 284.5998 284.5997 284.5997
10 130 130 130
Ou 168.7998 168.7998 168.7998
O12 168.7998 168.7998 168.7998
013 214.7598 214.7598 214.7598
014 394.2795 394.2797 394.2794
015 304.5196 394.2794 304.5196
16 394.2794 304.5196 394.2794
017 489.2794 489.2794 489.2794
O1s 489.2794 489.2794 489.2794
O19 511.2793 511.2794 511.2794
20 511.2794 511.2794 511.2794
021 523.2794 523.2794 523.2794
022 523.2794 523.2794 523.2794
023 523.2794 523.2794 523.2794
24 523.2794 523.2794 523.2794
025 523.2794 523.2794 523.2794
26 523.2794 523.2794 523.2794
027 10 10 10

028 10 10 10

029 10 10 10

030 87.9115 87.8311 92.7358
Os1 190 190 190
O3 190 190 190
033 190 190 190
O34 164.7998 164.7999 164.7998
Oss 164.8000 164.7999 164.7999
O3s 164.7999 164.8002 164.7999
037 110 110 110

Uss 110 110 110
O30 110 110 110

40 511.2794 511.2794 511.2794
Total cost($) 121,414.68 121,414.64 121,414.63
Mean Cost 121,421.19 121,453.26 121,427.69
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Stdev 11.93 26.23 19.71

Similarly, the results of studying the behavior of the proposed HABC
method using three different values of SHCR parameter are provided in Table
12. Apparently, the performance of the proposed method is improved as the
value of SHCR increased. The performance of Sen7 is the worst, this is
because the value of SHCR is the lowest. The best result is obtained by
Sen8, when the value of SHCR is set to 0.05. However, when the value of
PHCR increased to 0.5 bySen9, the performance of the proposed method is
more stable, but with results worst than Sen8. This is because the higher
value of SHCR leads to fast convergence and thus achieved worst results.

Table 12: Effect of SHCR parameter for Test System 3

Unit Sen7 Sen8 Sen9

g1 110.8004 110.8000 110.7999
02 110.8082 110.8005 110.7999
g3 97.4000 97.3999 97.3999
s 179.7331 179.7331 179.7331
Js 87.9263 87.8213 92.7143
Js 140 140 140

g7 259.5997 259.5997 259.5997
Js 284.5997 284.5997 284.5997
Jo 284.5997 284.5997 284.5997
010 130 130 130

Ju1 168.8000 168.7998 168.7998
012 168.7998 168.7998 168.7998
O13 214.7598 214.7598 214.7598
14 394.2794 394.2794 394.2794
Ois 394.2794 304.5196 394.2794
J16 304.5197 394.2794 304.5196
017 489.2794 489.2794 489.2794
Ois 489.2794 489.2794 489.2794
O19 511.2794 511.2794 511.2794
020 511.2794 511.2794 511.2794
021 523.2794 523.2794 523.2794
022 523.2794 523.2794 523.2794
023 523.2795 523.2794 523.2794
024 523.2794 523.2794 523.2794
025 523.2794 523.2794 523.2794
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26 523.2794 523.2794 523.2794
027 10 10 10

028 10 10 10

029 10 10 10

30 92.6220 92.7358 87.8436
Os1 190 190 190

O3 190 190 190

033 190 190 190

O34 164.7998 164.7998 164.7998
O35 164.7999 164.7999 164.7998
36 164.7999 164.7999 164.7998
037 110 110 110

O3s 110 110 110

039 110 110 110

G40 511.2794 511.2794 511.2794
Total cost($) 121,414.70 121,414.63 121,414.64
Mean Cost 121,477.67 121,427.69 121,426.41
Stdev 36.72 19.71 17.55

Figure 6 illustrates the box plot of the results of Senl to Sen9 recorded in
Tables 10 - 12. It can be seen that Sen4 and Sen9are statistically better than
the other proposed scenarios. This is indicate that the proposed HABC with
the parameter settings that are used in these scenarios are the best to make
the HABC more stabile able solve this case of ELD problem.
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Figure 6: Box plot for Senl — Sen9 of the proposed HABC algorithm on
Test System 3

In order to demonstrate the strength of the proposed HABC method when
compared with the other methods from the literature using a large-scaled
and highly complex real-world dataset. The best result obtained by the
proposed method as well as those achieved by the others are summarized in
Table 13. In this table, the best results as well as the mean of the results are
recorded. It should be noted the best recorded results are highlighted using
bold font. The comparative methods include 26 algorithms such as
ABOMDE (Lohokare et al., 2012), ACO (Pothiya et al., 2010), ARCGA
(Sayah and Hamouda, 2013), BGO (Bhattacharya and Chattopadhyay,
2010b), CBPSO-RVM (Lu et al., 2010), CSOMA (dos Santos Coelho and
Mariani, 2010), DE-BGO(Bhattacharya and Chattopadhyay, 2010a),
FAPSO (Niknam et al., 2011), FAPSO-NM (Niknam et al., 2011), FCASO-
SQP (Cai et al., 2012b), FFA (Yang et al., 2012), GA-PS-SQP (Alsumait et
al., 2010), GSO (Moradi-Dalvand et al., 2012), HCPSO-SQP (Cai et al.,
2012a), HHS (Pandi et al., 2011), HMAPSO (Kumar et al., 2011), HQIPSO
(Chakraborty et al., 2011), NDS (Lin et al., 2011), QIPSO (Meng et al., 2010),
TLA (Azizipanah-Abarghooee et al., 2012), TS (Pothiya et al., 2010),
TSARGA (Subbaraj et al., 2011), NUHS (Al-Betar et al., 2016b), and THS
(Al-Betar et al., 2016a). Interestingly, the proposed method obtained the
second best results ($121,414.63), while the best results ($121,412.74) get
by NUHS algorithm. This is proven that the proposed method can be used
efficiently to solve highly complex cases of ELD problem. Figure 7

compares the minimum fuel cost of the comparative methods.
Table 13: Comparison results of Test System 3

Method Best Mean
HABC 121,414.63 121,427.69
ABOMDE 121,414.87 121,487.85
ACO 121,811.37 121,930.58
ARCGA 121,415.50 121,462.15
BGO 121,479.50 121,512.06
CBPSO- 121,555.32 122,281.14
RVM

CSOMA 121,414.70 121,415.05
DE-BGO 121,420.89 121,420.90
FAPSO 121,712.40 121,778.25
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FAPSO-NM

FCASO-SQP

FFA
GA-PS-SQP
GSO

HCPSO-SQP

HHS
HMAPSO
HQIPSO
NDS
QIPSO
TLA

TS
TSARGA
NUHS
THS

121,418.30
121,456.98
121,415.05
121,458.00
124,265.40
121,458.54
121,415.59
121,586.90
121,418.60
121,647.40
121,448.21
122,009.77
122,288.38
121,463.07
121,412.74
121,425.15
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121,418.80
122,026.21
121,416.57
122,039.00
124,609.18
122,028.16
121,615.85
121,586.90
121,427.47
121,647.40
122,225.07
122,074.90
122,424.81
122,928.31
121,549.95
121,528.65
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HABC
ABOMDE
ACO
ARCGA

BGO
CBPSO-RVM
CSOMA
DE-BGO
FAPSO
FAPSO-NM
FCASO-SQP
FFA
GA-PS-SQP
GS0
HCPSO-SQP
HHS
HMAPSO
HQIPSO
NDS

Comparative methods

1.21 1.215 1.22 1.225 1.23 1.235 1.24
Minimum fuel cost % 10°

Figure 7: Minimum fuel cost comparison for Test System 3

Conclusion and future work

In this paper, the non-convex economic load dispatch (ELD) problem is
solved using the hybridization of ABC algorithm with g-hill climbing
optimizer, called HABC. The main objective of ELD problem is to
minimize the total fuel cost production of the active generating units in the
system. ELD is tackled by assigning generation levels to each generating
unit in the system, subject to fulfillment the quality and inequality
constraints. In HABC, the functionality of the onlooker bee phase is
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replaced with the pg-hill climbing optimizer in order to empower its
exploitation capability.

The proposed HABC is evaluated using three ELD problems with vary
size and complexity. That are, two different ELD problems with thirteen
generating units, and one problem with forty generating units. In order to
analyze the sensitivity of the HABC, nine convergence scenarios are
designed to reveal the effect of the parameter settings on the behavior of the
proposed HABC.As shown from the experimental results, increasing the
parameter value of SN and limit, and considerable value of SHCR leads to
superior results. This validate in the experimental results reported in Tables
2,3, 4,6, 7,8, 10, 11, and 12. Finally for comparative evaluation, the
results obtained by the proposed HABC is compared with those achieved by
the other methods from the literature. Interestingly, the proposed HABC
achieved the second best results in the three cases of ELD problem.

In future, efforts will be made to re-evaluate HABC to other versions of
ELD problems such as those with transmission losses and ramp rate limits.
Furthermore, HABC can be further improved by improving the selection
methods to be more focus on exploitation process. Other means of
optimization problems with non-convex, non-linear and constrained nature
can be also tackled using HABC to prove its performance.
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