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تسمق التل لحل مشكمة التوزيع -تهجين خوارزمية مستعمرة النحل الذكية مع خوارزمية بيتا
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Abstract 

 

  In power systems, economic load dispatch (ELD) problem is tackled by 

rescheduling the power outcomes of the generation units to minimized the 

fuel cost consumption.  ELD is formulated as an optimization problem 

which is tackled by several optimization methods. In this paper, ELD is 

tackled by a hybrid artificial bee colony (HABC). Artificial bee colony, an 

efficient optimization method, has a chronic shortcoming in improvisation 

equation of employed and onlooker bees operators. In HABC, the onlooker 

bee operator is replaced by the β-hill climbing optimizer as new operator to 

empower its exploitation capability. HABC is evaluated using two different 

ELD problems with thirteen generating units, and one problem with forty 

generating units. The effect of the different parameter settings on the 

behavior of HABC is tested using nine experimental scenarios. The 

experimental results demonstrate that HABC is able to achieve the second 

best results for the three ELD problems. 

 

 

1. Introduction 

Recently, economic load dispatch (ELD) problem aroused the attention 

of research communities in the power system. In ELD, the main objective is 

to achieve the predefined power output obtained from the active generating 

units in the system with minimum fuel costs. This is done in accordance 

with satisfying equality and inequality constraints. The power balance is 

represented as the quality constraints, while the power output is represented 

as the inequality constraints. In the previous era, the traditional calculus-

based optimization methods are proposed to solve ELD problems. Examples 

include gradient-based method (Dodu et al., 1972); linear programming 

algorithm (Jabr et al., 2000); non-linear programming algorithm (Nanda et 

al., 1994); quadratic programming (Coelho and Mariani, 2006); and 

lagrangian relaxation algorithm (El-Keib et al., 1994). Indeed, this method 

can be very efficient in solving the problem with low dimensionality. 

However, in large-dimensional ELD instances, this kind of method is 

impractical due to the fact that ELD is classified as a non-convex and highly 
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non-linear optimization problem, and thus cannot lend itself to be solved 

easily by the traditional methods. 

Metaheuristic-based method is the most efficient approach proposed for 

the ELD problems. This is because the method have the ability to solve 

complex problems with reasonable computational time (Blum and Roli, 

2003). The common capability of any metaheuristic-based method resides in 

its power in exploring the unvisited region of the search space (exploration) 

and exploiting the accumulative search (exploitation). Balance between the 

exploration and the exploitation is the key success of seeking for the optimal 

solution.  Conventionally, metaheuristic-based method could be classified 

into two main categories: local search-based, and population-based methods 

(Hussain et al., 2018). 

Local search methods are initiated with one random solution. This 

solution is iteratively changed based on neighboring search process to come 

up with a new neighboring solution. The neighboring solution replaces the 

current one, if better, and this process is terminated as the local minima is 

achieved.  Note that the exploitation is bias feature of the local-search based 

methods. There are many local search-based methods that have been used to 

solve ELD. This include: simulated annealing (Zhang et al., 2015), tabu 

search (Lin et al., 2002), GRASP (Neto et al., 2017), and β-hill climbing 

(Al-Betar et al., 2018). 

Population-based algorithms are normally initiated with a set of 

solutions. The properties of these solutions are exchanged using learning 

processes controlled by specific extreme values until a (premature) optimal 

solution is reached. It is worthy of notice that the population-based methods 

is bias to towards exploration. In general, the population-based methods can 

be further subdivided into evolutionary computation-based methods (EC) 

and swarm intelligence-based methods (SI) (BoussaïD et al., 2013). EC 

algorithm is inspired by utilizing Darwin's principle of natural selection (i.e., 

survival of the fittest), whereas SI algorithm, which is like the one used in 

this study, is mostly inspired by the animal behaviors on seeking food or 

hunting process. Some of the examples of EC algorithm utilized for solving 

ELD problems are genetic algorithm (Shang et al., 2017); harmony search 

(dos Santos Coelho and Mariani, 2009); and evolutionary algorithm (Sinha 

et al., 2003), while the SI method employed for ELD problems include krill 

herd algorithm (Mandal et al., 2014), cuckoo search algorithm (Afzalan and 

Joorabian, 2015);  bacterial foraging optimisation (Panigrahi and Pandi, 

2008); firefly algorithm(Yang et al., 2012); ant colony algorithm (Pothiya et 

http://onlinelibrary.wiley.com/doi/10.1002/etep.1878/full
http://digital-library.theiet.org/content/journals/10.1049/iet-gtd_20070422
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al., 2010); and particle swarm optimization (Selvakumar and Thanushkodi, 

2007). 

The Artificial Bee Colony (ABC) is a class of SI algorithm is proposed 

by Karaboga in 2005 (Karaboga, 2005). Due to its simplicity, flexibility, 

and robustness, ABC have been implemented to solve many optimization 

problems like nurse rostering problem (Awadallah et al., 2015), university 

timetabling (Bolaji et al., 2014), job-shop scheduling (Sundar et al., 2017), 

multi-threshold segmentation(Díaz-Cortés et al., 2017), knapsack 

problem(He et al., 2018), and others reported in (Akay and Karaboga, 2015, 

Bolaji et al., 2013, Karaboga et al., 2014). ABC suffers from shortcomings 

such as i) it easy to get stuck in local optima; ii) very slow when applied to 

solve hard problems, due to the high number of fitness evaluations at each 

iteration; and iii) the search equation of the employee and onlooker bees 

operators is poor in exploitation and good in exploration (Ab Wahab et al., 

2015, Bolaji et al., 2013, Gao et al., 2012). Multiple versions of ABC have 

been proposed in order to bridge these shortcomings (Awadallah et al., 

2015, Gao et al., 2012, He et al., 2018, Zhong et al., 2017).  

In this paper, a hybrid version of ABC algorithm is proposed for solving 

the ELD problems, called HABC. In HABC, the following contributions are 

utilized:  

 The β-hill climbing optimizer is replaced the functionality of the 

onlooker bee operator of the ABC algorithm in order to empower 

its exploitation capability, called HABC. 

 The β-hill climbing rate (βHCR) is suggested as a control 

parameter to determine the percentage of using β-hill climbing 

optimizer in ABC algorithm.  

 The HABC is experimentally evaluated using three non-convex 

ELD systems with diverse complexities and characteristics: two 

different ELD problems with thirteen generating units, and one 

problem with forty generating units.  

 The sensitivity analysis step of HABC is studied to show the 

impact of its control parameters on its convergence behavior.  

 The comparative evaluation for HABC concur that it achieves 

superior results when it compares with the available state of the 

art methods using the same ELD problems. 

https://link.springer.com/chapter/10.1007/978-3-319-57813-2_10
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The paper is organized as follow: Section 2 presents the formulation of 

the ELD problem. Section 3 describes the different steps of the proposed 

HABC algorithm used to solve the ELD problem.  Experimental results and 

analysis are provided in Section 4. Finally, conclusions and some future 

directions are summarized in Section 5. 

 

2. ELD problem formulation 

The Economic load dispatch (ELD) problem is defined as the process of 

allocating generation levels to be generated by each active generating units 

in the system. The main objective is to minimize the fuel cost of the 

generating units for a specific period of operations subject to satisfying the 

quality and inequality constraints. Generally, the ELD can be formulated as: 

 

Minimize        (1) 

 

Where FT is the total production cost in $/hr; N is the total number of active 

generating units included in the system; and Fi(Pi) is the fuel cost function 

for the generating unit i, which is calculated using the following equation: 

 

(2) 

 

Where ai, bi, and ci are the smooth fuel cost coefficients of the generating 

unit i; ei and fi are the non-smooth fuel cost coefficients of the generating 

unit i; Pi is the electrical output power of generating unit i in MW; and 

is the minimum generating limit of generating unit i.  

 

The solution of the ELD problem is subjected to the following constraints: 

1. Quality constraint (Power balance constraint): 

 

                                              (3) 
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Where PD is the total load demand in MW; PL is the total transmission 

losses in the system in MW. It should be noted that the total 

transmission losses PL is computed using B-coefficients as follows: 

(4) 

2. Inequality constraint (Power generation limits):  

 

                                         (5) 

 

The output power (MW) of each generating unit i shall be within their 

minimum limit and maximum limit . 

 

It is worth to mention that, the system transmission losses will be ignored 

for all the test cases considered in this research as the others (Al-Betar et al., 

2018, Al-Betar et al., 2016a, Al-Betar et al., 2016b). 

 

 

3. The proposed Method 

In this section, the hybridization of ABC algorithm with β-hill climbing 

optimizer for tacking the non-convex ELD problems is presented. 

The ABC algorithm is a SI algorithm introduced  by Karaboga in 2005 

(Karaboga, 2005). This algorithm simulates the intelligent foraging behavior 

of a honey bee colony. In general, the honey bees in the colony is divided 

into three groups based on foraging task: i) employed bees; ii) onlooker 

bees; and iii) scout bees. Employed bees are responsible to collect the 

nectars from the discovered food sources and transfer to the hive, as well as, 

dancing in the hive in order to share the information about the food sources 

with the onlooker bees in the hive. Onlooker bees are responsible to select 

one of the good food sources to exploit. Finally, the scout bees are 

responsible to discover new food sources randomly. In optimization terms, 

the employed and onlooker bees are the source of exploitation capability by 

exploiting the discovered food sources, while the scout bees is the source of 
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the exploration capability by visiting new food source randomly. The 

procedural steps of the proposed HABC for ELD is illustrated in Figure 1, 

while the description of these steps are given below: 

3.1 Initialize the parameters 

In this step, the four parameters of the proposed HABC are initialized 

which includes: 

- Solution Number (SN) represents the number of solutions (i.e., food 

sources) in the population. 

- Maximum cycle number (MCN) reflects the maximum number of 

generations. 

- limit represents the certain number of generations which is used to 

abandon the exhausted food source in the population. 

- β-hill climbing rate (βHCR) refers to the rate of calling the β-hill 

climbing optimizer in order to enhance the desired food source, 

where its value between 0 and 1. 

Similarly, the representation of the solutions, as well as, the cost function 

(see Eq. (1)) are initialized. Furthermore, the different parameters of the 

ELD problem, which are mentioned in Section 2, are extracted from the 

dataset.  
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Figure 1: The flowchart of the proposed HABC algorithm 

 

3.2 Generate the food sources 

In this step, the initial solutions in the population are initialized, BM= [P1, 

P2, …, PSN]
T
, where SN is the size of the population. Each solution Pj= {Pj1, 

Pj2, Pj3, …, PjN} in the population reflect one of the food sources, where N is 

represents the number of active generating units in the system.  These initial 

solutions are randomly constructed as follows: 

                    (6) 

Where j ϵ [1, SN] and iϵ [1, N], and U(0,1) generates a random number 

between 0 and 1. 

Then, simple repair procedure is triggered to ensure the feasibility of 

each solution by satisfying the quality and inequality constraints. In repair 

process, each generating unit Pji is check to ensure the output power 
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assigned is between and . If Pji is less than or bigger 

than , then Pji is assigned a random value between and . On 

other hand, if the summation of the output power for all generating unit in 

the system is not met the total load demand then these differences will be 

added or removed from the different generating units. 

Finally, each solution in the population is subjected to calculate the total 

production cost using Eq. (1). 

3.3 Sending employed bees for food sources 

Every food source (i.e., solution) is under the responsibility of one 

employed bee, in which each employed bee modifies its current associated 

solution Pj to produces the neighborhood solution Pj' using Eq. (7).  

                                          (7)  

Where Pj is the current associated solution; Pk is other solution selected 

randomly, where k must different from j; i is the position of the generating 

unit to be perturbated; and φ is a random number between -1 and 1, that is 

used to move from the current solution Pj  to new one Pj'.  It should be 

noted that if the total production cost of the new solution Pj' is less than that 

of its current associated solution Pj, then the employed bee release the old 

one Pj and memorize the new solution Pj' as the current associated solution. 

3.4 Calculation of probability for food sources 

When the employed bees complete their search using Eq. (7), each 

employed bee share the information of the found food sources to the 

onlooker bees. The onlooker bee chooses a food source for further search 

depending on the probability. The nectar value in each food sources is used 

to calculate the probability. In this step, the probability of each solution in 

the population is assigned using Eq. (8), where this probability is calculated 

depending on the value of the total cost production (see Eq. (1)). 

                                   (8) 

Where the FT(PJ) is the value of the total cost production of solution PJ; SN  

is the population size; and  is unity. 

3.5 Sending onlooker bees to food sources 
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The onlooker bee chooses one of the fittest food sources for further search 

using the same search equation of the employed bees. Likewise, if the new 

solution is better than the old one, its replaces the old one in the population.  

It should be noted that the search equation of employed and onlooker 

bees is good in exploration and poor in exploitation (Gao et al., 2012). For 

this reasons, the search equation of the onlooker bee is replaced using β-hill 

climbing optimizer in order to enhance the desired solution until maximum 

limit is achieved. Based on the above-mentioned shortcoming, the proposed 

method is known as HABC, a new hybrid version of artificial bee colony 

algorithm is proposed for solving the ELD problem.  

β-hill climbing optimizer is a modified version of the simple local search 

known as hill climbing algorithm, it is proposed by Al-Betar in 2017 (Al-

Betar, 2017). In this algorithm, a new intelligent operator (β-operator) is 

added to the body of the algorithm in order to escape being stuck in local 

optima. β-operator is similar to mutation operator in genetic algorithm, 

which is the main source of randomness.  

In this phase, the desired solution is passed to the β-hill climbing 

optimizer in order to find the local optima. It should be noted that the β-hill 

climbing optimizer is triggered depending on β-hill climbing rate (βHCR). 

The higher value of  βHCR leads to higher probability of running the β-hill 

climbing optimizer, and thus the higher the rate of exploitations and the 

higher the CPU time. 

3.6 Scout bees phase 

If there exist any solution in the population that is not enhanced for a given 

number of generations (as determined by limit parameter), the scout bee 

replaces this abandoned solution with a new one, which is generated 

randomly using Eq. (6). 

3.7 Stop condition 

Steps 3.3 to 3.6 are repeated until the maximum number of generations is 

reached (MCN). 

 

4. Results and discussions  

The proposed HABC algorithm  is used to solve ELD problems using 

three different test cases in order to evaluate its performance. These test 
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cases are i) 13 generating units with required load demand is 1800MW; ii) 

13 generating units with required load demand is 2520MW; and iii) 40 

generating units with required load demand is 10500MW.  

4.1 Experimental Setup 

The performance of the proposed HABC is tested using nine convergence 

scenarios are provided in Table 1. These scenarios are divided into three 

groups in order to study the three parameters of the proposed method. 

Firstly, the SN parameter is studied using three different values (i.e., SN=10, 

SN=20, and SN=30)  in three different convergence scenarios (i.e., Sen1, 

Sen2, and Sen3). Whereas the value of the other parameters in these 

scenarios are fixed like limit=SN×D and βHCR=0.05. It should be noted that 

the value of the SN parameter that obtained the best results in Sen1 - Sen3 

will be used in the following experimental scenarios. 

Secondly, the next three convergence scenarios (Sen4 - Sen6) are designed 

to study the effect of the limit parameter using three values (i.e., 

limit=0.5×SN×D, limit=SN×D, and limit=2×SN×D). The value of the βHCR 

parameter in these scenarios is fixed to 0.05. Again the value of the limit 

parameter that achieved the best results in these scenarios will be used in the 

next experiments. Finally, the last three scenarios are designed to study of 

the effect βHCR parameter on the performance of the proposed algorithm.  

It is worth of mentioning that the proposed HABC algorithm is 

implemented using MATLAB VersionR2014b. The implemented code is 

executed on Corei7machine with16 GB RAM and Microsoft windows 10as 

operating system. 

 

Table 1: Experimental scenarios used to study the behavior the 

proposed HABC. 

Scenario SN Limit βHCR 

Sen1 10 SN×D 0.05 

Sen2 20   

Sen3 30   

Sen4  0.5×SN×D 0.05 

Sen5  SN×D  
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Sen6  2×SN×D  

Sen7   0.005 

Sen8   0.05 

Sen9   0.5 

 

4.2 Test System 1 

This test system comprises of thirteen generating units with non-convex 

cost functions. The total load demand was assumed to be 1800MW.  The 

generating unit data of this problem is collected form (Walters and Sheble, 

1993).  

The results of studying the SN parameter using three different values in 

three convergence scenarios are shown in Table 2. In this table, the best 

solution obtained over 25 runs for each convergence scenario is recorded. 

Furthermore, as shown in this table the total cost of the best solution, the 

mean of the results, as well as the standard derivations are summarized. The 

best result obtained is highlighted in bold font. From Table 2, it is obvious 

that the best result is obtained by Sen3, where the value of SN is the highest. 

This is because the higher value of SN leads the proposed method to cover a 

larger area of the problem search space and thus the probabilities to reach 

better results are increased.  It should be noted that the value of SN is set to 

30 in the next experiments. It worth of mentioning that if SN is higher than 

30 there are no much difference in the obtained results which leads to 

undesirable computational time. 

 

 

 

 
Table 2: Effect of SN parameter for Test System 1 

Unit Sen1 Sen2 Sen3 

g1 62833185 62833185 62833185 
g2 22433995 22433993 14935814 
g3 14834442 14739598 22238447 
g4 14938665 14938658 14938583 
g5 14938662 14938658 14938522 
g6 64 14938641 64 
g7 14938289 14938642 14938567 
g8 14938596 64 14938657 
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g9 14938565 14938665 14938663 
g10 44 44 44 
g11 44 44 44 
g12 55 55 55 
g13 55 55 55 

Total cost($) 17,960.67 17,960.54 17,960.51 

Mean Cost 17,965.53 17,963.24 17,961.62 

Stdev 3.84 3.28 1.43 
 

The results of the three convergence scenarios (Sen4 – Sen6) that are used to study the 

limit parameter on this problem are provided in Table 3. This table summarizes the cost of 

each generating unit in the best solution achieved, the total cost of the best solution, the 

mean of the results, and the standard derivations. Again, each convergence scenario is run 

25 times.  The cost of the best solution obtained is highlighted in bold font. 

The recorded results in Table 3 demonstrate that the performance of the proposed 

HABC algorithm is affected by the varying value of limit parameter. As shown in this table, 

the best results are obtained by Sen6, where the value of limit parameter is the highest. 

Furthermore, the results obtained by the other scenarios (Sen4 and Sen5) are very close to 

results of Sen6.  

 Finally, in order to show the effect of variation of the βHCR parameter 

on the performance of the proposed HABC method, three convergence 

scenarios are designed with three values of βHCR parameter (i.e., Sen7 

(βHCR=0.005), Sen8 (βHCR=0.05), and Sen9 (βHCR=0.5)). It should be 

noted that when the value of βHCR is higher, then it leads to the higher 

calling of β-hill climbing algorithm and thus increase the rate of exploitation 

and CPU time. Table 4 shows the comparison of the best solutions obtained 

by Sen7 to Sen9. As seen in this table, the minimum total cost 

($173964338)is obtained by Sen8, where the value of βHCR is set to 0.05. 

This is because the value of βHCR parameter achieved the considerable 

balance between the exploitation and exploration capabilities during the 

navigation of the search space of the problem. However, the performance of 

the Sen7 is the worst, this is because the value of βHCR parameter is low 

and thus leads to high rate of exploration and low rate of exploitation.  

 

 

Table 3: Effect of limit parameter for Test System 1 

Unit Sen4 Sen5 Sen6 

g1 62833185 62833185 62833185 
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g2 22433993 14935814 14935987 
g3 14739564 22238447 22237538 
g4 64 14938583 14938665 
g5 14938658 14938522 14938665 
g6 14938667 64 14938655 
g7 14938665 14938567 6434444 
g8 14938644 14938657 14938665 
g9 14938625 14938663 14938639 
g10 44 44 44 
g11 44 44 44 
g12 55 55 55 
g13 55 55 55 

Total cost($) 173964353 173964351 83.069,71 

Mean Cost 173962349 173961362 173961324 

Stdev 1374 1343 4355 

 

 

Table 4: Effect of βHCR parameter for Test System 1 

Unit Sen7 Sen8 Sen9 

g1 62833184 62833185 62833185 
g2 22434833 14935987 14935948 
g3 14835214 22237538 22237624 
g4 14937881 14938665 14938661 
g5 14938318 14938665 14938654 
g6 64 14938655 14938659 
g7 14938413 64 14938651 
g8 14938425 14938665 64 
g9 14938135 14938639 14938657 
g10 44 44 44 
g11 44 44 44 
g12 55 55 55 
g13 55 55 55 

Total cost($) 173961391 83.069,71 173964344 

Mean Cost 173987379 173961324 173964392 

Stdev 7335498 4355 1336 
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 Figure 2 shows the box plot for the experimental results of Sen1 to Sen9 

based on the results recorded in Tables 2 – 4 on Test System 1. It can be 

seen from the figure that the distribution of the results obtained over 25 runs 

for each experimental scenario. The x-axis represent the proposed 

experimental scenarios, while y-axis represents the total fuel cost achieved. 

Clearly, Sen9 is statistically better than the other proposed scenarios, where 

the distance between the best, median, and the worst results is the smallest. 

 
Figure 2: Box plot for Sen1 – Sen9 of the proposed HABC algorithm on 

Test System 1 

 

 For comparative evaluation purposes, the best result obtained by the 

proposed HABC algorithm is compared with those achieved by the other 

methods as shown in Table 5. The comparative methods include ABOMDE 

(Lohokare et al., 2012), FCASO-SQP (Cai et al., 2012b), GA-PS-SQP 

(Alsumait et al., 2010), HCASO (Cai et al., 2012b), HHS (Pandi et al., 

2011), HMAPSO (Kumar et al., 2011), HQIPSO (Chakraborty et al., 2011), 

HS (dos Santos Coelho and Mariani, 2009), HIS (dos Santos Coelho and 

Mariani, 2009), QIPSO (Azizipanah-Abarghooee et al., 2012), NUHS (Al-

Betar et al., 2016b), and THS (Al-Betar et al., 2016a). As shown in this 

table, the proposed HABC algorithm outperforms ten out of 14 comparative 

methods. However, the best results ($17,960.37) is achieved by four 

comparative methods, while the proposed algorithm obtained the second 
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best results ($17,960.38).This is prove that the proposed algorithm can be 

able to make a right balance between the exploration and exploitation while 

navigating the problem search space and thus achieve better results. Figure 

3 compares the minimum fuel costs obtained by the comparative methods.  

 

Table 5: Comparison results of Test System 1 

Method Best Mean 

HABC 17,960.38 173961324 

ABOMDE 17,963.85 17,967.36 

FCASO-SQP 17,964.08 18,001.96 

GA-PS-SQP 17,964.00 18,199.00 

HCASO 17,965.15 18,022.04 

HHS 17,963.83 17,972.48 

HMAPSO 17,969.31 17,969.31 

HQIPSO 17,966.37 18,081.05 

HS 17,965.62 17,986.56 

HIS 17,960.37 17,965.42 

QIPSO 17,969.01 18,075.11 

NUHS 17,960.37 17,987.10 

THS 17,960.37 17,977.60 

 
Figure 3: Minimum fuel cost comparison for Test System 1 
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4.3  Test System 2 

This system considers thirteen generating units with a load demand of 

2520MW. The problem instance is reported in (Walters and Sheble, 1993). 

Tables 6,  7, and 8 summarize the results of studying the performance of the 

proposed method using nine convergence scenarios as provided in Table 1. 

The tables 6, 7, and 8 recorded the best solution obtained by each 

convergence scenario, the cost of this solution, the mean of the results over 

25 runs, and the standard derivation. The best result achieved is highlighted 

using bold font.  

Table 6 shows the results of Sen1 to Sen3 that are employed to study the 

effect of SN parameter using three different values (i.e., SN=10, SN=20, and 

SN=30). Apparently, the performance of the three scenarios are almost 

similar, where the difference on the total cost less than or equal to 0.04.  

However, Sen3 where the SN parameter is 30 achieved best result, and this 

value will be use in the next experimental scenarios. 
Similarly, the results of studying the performance of Sen4 to Sen6 on Test System 2 are 

shown in Table 7. Again, these scenarios are designed in order to study the effect of limit 

parameter using varying values. The results in Table 7 clearly show the effectiveness of the 

limit parameter on the performance of the proposed method, whereas Sen6 is successfully 

achieved the best solution. This is proven that the SN×D is suitable threshold value of the 

limit parameter to diversify the population, and this value is used in the next phase of 

experiments.  

 

 

 

 

 

 

 

 

Table 6: Effect of SN parameter for Test System 2 

Unit Sen1 Sen2 Sen3 

g1 62833185 62833185 62833185 
g2 29931938 29931992 29931993 
g3 29435198 29435243 29434938 
g4 15937331 15937328 15937318 
g5 15937326 15937329 15937331 
g6 15937326 15937331 15937334 
g7 15937328 15937334 15937346 
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g8 15937329 15937331 15937329 
g9 15937329 15937334 15937323 
g10 7733895 7733771 7733949 
g11 7733852 7733999 7733999 
g12 9234446 9234441 9234444 
g13 9233959 9233874 9234444 

Total cost($) 243164312 243164311 81.861,91 

Mean Cost 243167392 243165344 243164389 

Stdev 7321 1324 4397 
 

Table 7: Effect of limit parameter for Test System 2 

Unit Sen4 Sen5 Sen6 

g1 62833185 62833185 62833185 
g2 29932444 29931993 29931991 
g3 29435113 29434938 29435494 
g4 15937253 15937318 15937331 
g5 15937327 15937331 15937313 
g6 15937266 15937334 15937325 
g7 15937327 15937346 15937331 
g8 15937331 15937329 15937331 
g9 15937348 15937323 15937328 
g10 7733994 7733949 7733988 
g11 7733994 7733999 7733999 
g12 9233944 9234444 9233787 
g13 9234445 9234444 9233996 

Total cost($) 243164314 81.861,91 243164349 

Mean cost 243164374 243164389 243164395 

Stdev 4346 4397 1314 

 

The best solutions achieved by studying the βHCR parameter 

using three different values are summarized in Table 8.  

Clearly, Sen8 succeed to obtain the minimum total fuel cost 

($243164348). This is proven that the 0.05 is the threshold value of the βHCR 

parameter and is able to make the right balance between the 

exploration and exploitation. 
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Table 8: Effect of βHCR parameter for Test System 2 

Unit Sen7 Sen8 Sen9 

g1 62833185 62833185 62833185 
g2 29931884 29931993 29931992 
g3 29437467 29434938 29434994 
g4 15937324 15937318 15937331 
g5 15935931 15937331 15937334 
g6 15937339 15937334 15937329 
g7 15937276 15937346 15937328 
g8 15937258 15937329 15937285 
g9 15937324 15937323 15937295 
g10 7733829 7733949 7733971 
g11 7733884 7733999 7733974 
g12 9233743 9234444 9233998 
g13 9233563 9234444 9233996 

Total cost($) 243164369 81.861,91 243164349 

Mean cost 243172347 243164389 243164336 

Stdev 7383 4397 4317 

 
 Figure 4 shows the box that illustrates the distribution of the results of 

Sen1 to Sen9 on Test System 2. It can be seen from the figure that Sen9 is 

statistically better than the other proposed scenarios. 
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Figure 4: Box plot for Sen1 – Sen9 of the proposed HABC algorithm on 

Test System 2 

 

 

The best result obtained by the proposed HABC against those 

obtained by the competitors are recorded in Table 9. In this 

table, the best results obtained by the comparative methods 

as well as the mean of the results are recorded. The best 

results obtained are highlighted using bold font. The 

comparative methods include ACO (Pothiya et al., 2010), 

FCASO-SQP (Cai et al., 2012b), HCASO (Cai et al., 2012a), 

HCPSO (Cai et al., 2012a), HCPSO-SQP (Cai et al., 2012a), TS 

(Pothiya et al., 2010), TSA (Khamsawang and Jiriwibhakorn, 

2010), NUHS (Al-Betar et al., 2016b), THS (Al-Betar et al., 

2016a), and IGWO (Mehmood and Ahmad, 2017). It can be 

observed from Table 9 that the performance of HABC is 

significantly better than eight out of ten comparative 

methods from the literature. Clearly, the best results 

($24,164.06) are obtained by two of the comparative methods, 

while the proposed HABC is ranked second ($24,164.08). This is 

clearly shows the potential of the proposed method. Figure 5 



 

 

 

 

 

HABC: Hybridizing artificial bee ….  

21 

 

 

illustrates the comparison of the results of the comparative 

methods in term of the minimum fuel cost.   

 
Table 9: Comparison results of Test System 2 

Method Best Mean 

HABC 24,164.08 243164389 

ACO 24,174.39 24,211.09 

FCASO-SQP 24,190.63 NA 

HCASO 24,212.93 NA 

HCPSO 24,211.56 NA 

HCPSO-SQP 24,190.97 NA 

TS 24,180.31 24,243.37 

TSA 24,171.21 24,184.06 

NUHS 24,164.06 24,185.61 

THS 24,164.06 24,195.21 

IGWO 243242326 243214344 

 

 
Figure 5: Minimum fuel cost comparison for Test System 2 

4.4  Test System 3 

In order to evaluate the efficiency of the proposed method using larger 

dataset, a problem instance with forty generating units is employed.  The 
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total expected load demand is 10500MW. The system parameters are taken 

from (Sinha et al., 2003).  It should be noted that, the nine convergence 

scenarios provided in Table 1 are studied for this test system, and the 

experimental results are summarized in Tables 10, 11, and 12. The best 

results achieved are highlighted using bold numbers. Again, each 

convergence scenario is repeated 25 independent runs.  

The results of studying the behavior of the proposed HABC using various 

values of SN parameter are recorded in Table 10. It can be seen that Sen1 

and Sen2 obtained the same best total cost ($1213414364). However, the 

result of Sen3 is very close to results of the other scenarios with higher 

computational time. Based on above, the value of the SN parameter will be 

set to 10 in the next experiments. 

 

Table 10: Effect of SN parameter for Test System 3 

Unit Sen1 Sen2 Sen3 

g1 11437998 11437999 11437998 
g2 11438448 11438448 11438443 
g3 9733999 9733999 9733999 
g4 17937331 17937331 17937331 
g5 9237254 8738292 9236843 
g6 144 144 144 
g7 25935997 25935997 25935997 
g8 28435997 28435997 28435997 
g9 28435997 28435997 28435997 
g10 134 134 134 
g11 16837998 16837999 16837998 
g12 16837998 16837999 16837998 
g13 21437598 21437598 21437598 
g14 39432797 39432794 39432794 
g15 39432794 39432793 39432794 
g16 34435196 34435196 34435196 
g17 48932794 48932794 48932794 
g18 48932794 48932794 48932794 
g19 51132794 51132794 51132794 
g20 51132794 51132794 51132794 
g21 52332794 52332794 52332794 
g22 52332794 52332794 52332794 
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g23 52332794 52332794 52332794 
g24 52332794 52332794 52332794 
g25 52332794 52332794 52332794 
g26 52332794 52332794 52332794 
g27 14 14 14 
g28 14 14 14 
g29 14 14 14 
g30 8738311 9237277 8738733 
g31 194 194 194 
g32 194 194 194 
g33 194 194 194 
g34 16437999 16437998 16437998 
g35 16437999 16437999 16437998 
g36 16438442 16437998 16437998 
g37 114 114 114 
g38 114 114 114 
g39 114 114 114 
g40 51132794 51132794 51132794 

Total cost($) 888.181,61 888.181,61 1213414366 

Mean Cost 1213453326 1213438358 1213434314 

Stdev 26323 22326 21399 

 

The results obtained by Sen4 to Sen6 that are used to study the behavior 

of the proposed method using various values of limit parameter as reported 

in Table 11. It is observed from the results summarized in this table, Sen6 

obtained the best solution, while Sen4 achieved the worst results. Which 

proved that the lower value of limit parameter leads to undesirable diversify 

of the population and thus achieved worst results. The value of 2×SN×D is 

set for limit parameter in the next experimental scenarios. 

 

Table 11: Effect of limit parameter for Test System 3 

Unit Sen4 Sen5 Sen6 

g1 11438413 11437998 11438444 
g2 11438417 11438448 11438445 
g3 9734444 9733999 9733999 
g4 17937331 17937331 17937331 
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g5 9236424 9237254 8738213 
g6 144 144 144 
g7 25935997 25935997 25935997 
g8 28435998 28435997 28435997 
g9 28435998 28435997 28435997 
g10 134 134 134 
g11 16837998 16837998 16837998 
g12 16837998 16837998 16837998 
g13 21437598 21437598 21437598 
g14 39432795 39432797 39432794 
g15 34435196 39432794 34435196 
g16 39432794 34435196 39432794 
g17 48932794 48932794 48932794 
g18 48932794 48932794 48932794 
g19 51132793 51132794 51132794 
g20 51132794 51132794 51132794 
g21 52332794 52332794 52332794 
g22 52332794 52332794 52332794 
g23 52332794 52332794 52332794 
g24 52332794 52332794 52332794 
g25 52332794 52332794 52332794 
g26 52332794 52332794 52332794 
g27 14 14 14 
g28 14 14 14 
g29 14 14 14 
g30 8739115 8738311 9237358 
g31 194 194 194 
g32 194 194 194 
g33 194 194 194 
g34 16437998 16437999 16437998 
g35 16438444 16437999 16437999 
g36 16437999 16438442 16437999 
g37 114 114 114 
g38 114 114 114 
g39 114 114 114 
g40 51132794 51132794 51132794 

Total cost($) 1213414368 1213414364 888.181,67 

Mean Cost 1213421319 1213453326 1213427369 
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Stdev 11393 26323 19371 

 

Similarly, the results of studying the behavior of the proposed HABC 

method using three different values of βHCR parameter are provided in Table 

12. Apparently, the performance of the proposed method is improved as the 

value of βHCR increased. The performance of Sen7 is the worst, this is 

because the value of βHCR is the lowest. The best result is obtained by 

Sen8, when the value of βHCR is set to 0.05. However, when the value of 

βHCR increased to 0.5 bySen9, the performance of the proposed method is 

more stable, but with results worst than Sen8. This is because the higher 

value of βHCR leads to fast convergence and thus achieved worst results. 

Table 12: Effect of βHCR parameter for Test System 3 

Unit Sen7 Sen8 Sen9 

g1 11438444 11438444 11437999 
g2 11438482 11438445 11437999 
g3 9734444 9733999 9733999 
g4 17937331 17937331 17937331 
g5 8739263 8738213 9237143 
g6 144 144 144 
g7 25935997 25935997 25935997 
g8 28435997 28435997 28435997 
g9 28435997 28435997 28435997 
g10 134 134 134 
g11 16838444 16837998 16837998 
g12 16837998 16837998 16837998 
g13 21437598 21437598 21437598 
g14 39432794 39432794 39432794 
g15 39432794 34435196 39432794 
g16 34435197 39432794 34435196 
g17 48932794 48932794 48932794 
g18 48932794 48932794 48932794 
g19 51132794 51132794 51132794 
g20 51132794 51132794 51132794 
g21 52332794 52332794 52332794 
g22 52332794 52332794 52332794 
g23 52332795 52332794 52332794 
g24 52332794 52332794 52332794 
g25 52332794 52332794 52332794 
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g26 52332794 52332794 52332794 
g27 14 14 14 
g28 14 14 14 
g29 14 14 14 
g30 9236224 9237358 8738436 
g31 194 194 194 
g32 194 194 194 
g33 194 194 194 
g34 16437998 16437998 16437998 
g35 16437999 16437999 16437998 
g36 16437999 16437999 16437998 
g37 114 114 114 
g38 114 114 114 
g39 114 114 114 
g40 51132794 51132794 51132794 

Total cost($) 1213414374 888.181,67 1213414364 

Mean Cost 1213477367 1213427369 1213426341 

Stdev 36372 19371 17355 

 

 Figure 6 illustrates the box plot of the results of Sen1 to Sen9 recorded in 

Tables 10 - 12. It can be seen that Sen4 and Sen9are statistically better than 

the other proposed scenarios. This is indicate that the proposed HABC with 

the parameter settings that are used in these scenarios are the best to make 

the HABC more stabile able solve this case of ELD problem. 
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Figure 6: Box plot for Sen1 – Sen9 of the proposed HABC algorithm on 

Test System 3 

 

In order to demonstrate the strength of the proposed HABC method when 

compared with the other methods from the literature using a large-scaled 

and highly complex real-world dataset. The best result obtained by the 

proposed method as well as those achieved by the others are summarized in 

Table 13. In this table, the best results as well as the mean of the results are 

recorded. It should be noted the best recorded results are highlighted using 

bold font. The comparative methods include 26 algorithms such as 

ABOMDE (Lohokare et al., 2012), ACO (Pothiya et al., 2010), ARCGA 

(Sayah and Hamouda, 2013), BGO (Bhattacharya and Chattopadhyay, 

2010b), CBPSO-RVM (Lu et al., 2010), CSOMA (dos Santos Coelho and 

Mariani, 2010), DE-BGO(Bhattacharya and Chattopadhyay, 2010a), 

FAPSO (Niknam et al., 2011), FAPSO-NM (Niknam et al., 2011), FCASO-

SQP (Cai et al., 2012b), FFA (Yang et al., 2012), GA-PS-SQP (Alsumait et 

al., 2010), GSO (Moradi-Dalvand et al., 2012), HCPSO-SQP (Cai et al., 

2012a), HHS (Pandi et al., 2011), HMAPSO (Kumar et al., 2011), HQIPSO 

(Chakraborty et al., 2011), NDS (Lin et al., 2011), QIPSO (Meng et al., 2010), 

TLA (Azizipanah-Abarghooee et al., 2012), TS (Pothiya et al., 2010), 

TSARGA (Subbaraj et al., 2011), NUHS (Al-Betar et al., 2016b), and THS 

(Al-Betar et al., 2016a). Interestingly, the proposed method obtained the 

second best results ($121,414.63), while the best results ($121,412.74) get 

by NUHS algorithm. This is proven that the proposed method can be used 

efficiently to solve highly complex cases of ELD problem. Figure 7 

compares the minimum fuel cost of the comparative methods.   
Table 13: Comparison results of Test System 3 

Method Best Mean 

HABC 121,414.63 121,427.69 

ABOMDE 121,414.87 121,487.85 

ACO 121,811.37 121,930.58 

ARCGA 121,415.50 121,462.15 

BGO 121,479.50 121,512.06 

CBPSO-

RVM 

121,555.32 122,281.14 

CSOMA 121,414.70 121,415.05 

DE-BGO 121,420.89 121,420.90 

FAPSO 121,712.40 121,778.25 
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FAPSO-NM 121,418.30 121,418.80 

FCASO-SQP 121,456.98 122,026.21 

FFA 121,415.05 121,416.57 

GA-PS-SQP 121,458.00 122,039.00 

GSO 124,265.40 124,609.18 

HCPSO-SQP 121,458.54 122,028.16 

HHS 121,415.59 121,615.85 

HMAPSO 121,586.90 121,586.90 

HQIPSO 121,418.60 121,427.47 

NDS 121,647.40 121,647.40 

QIPSO 121,448.21 122,225.07 

TLA 122,009.77 122,074.90 

TS 122,288.38 122,424.81 

TSARGA 121,463.07 122,928.31 

NUHS 121,412.74 121,549.95 

THS 121,425.15 121,528.65 
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Figure 7: Minimum fuel cost comparison for Test System 3 

 

Conclusion and future work 
In this paper, the non-convex economic load dispatch (ELD) problem is 

solved using the hybridization of ABC algorithm with β-hill climbing 

optimizer, called HABC. The main objective of ELD problem is to 

minimize the total fuel cost production of the active generating units in the 

system. ELD is tackled by assigning generation levels to each generating 

unit in the system, subject to fulfillment the quality and inequality 

constraints. In HABC, the functionality of the onlooker bee phase is 
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replaced with the β-hill climbing optimizer in order to empower its 

exploitation capability. 

The proposed HABC is evaluated using three ELD problems with vary 

size and complexity. That are, two different ELD problems with thirteen 

generating units, and one problem with forty generating units. In order to 

analyze the sensitivity of the HABC, nine convergence scenarios are 

designed to reveal the effect of the parameter settings on the behavior of the 

proposed HABC.As shown from the experimental results, increasing the 

parameter value of SN and limit, and considerable value of βHCR leads to 

superior results. This validate in the experimental results reported in Tables 

2, 3, 4, 6, 7, 8, 10, 11, and 12. Finally for comparative evaluation, the 

results obtained by the proposed HABC is compared with those achieved by 

the other methods from the literature. Interestingly, the proposed HABC 

achieved the second best results in the three cases of ELD problem.   

In future, efforts will be made to re-evaluate HABC to other versions of 

ELD problems such as those with transmission losses and ramp rate limits. 

Furthermore, HABC can be further improved by improving the selection 

methods to be more focus on exploitation process. Other means of 

optimization problems with non-convex, non-linear and constrained nature 

can be also tackled using HABC to prove its performance.    
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