Answer all of the following questions:

Q1) a)(5 pt.) Show that (X, τ) is T_{l} if and only if each point $x \in X$ is a closed subset of X.
b) (5 pt.) Show that $\operatorname{int}(A) \cup \operatorname{int}(B) \subseteq \operatorname{int}(A \cup B)$. Show that the equality may not always hold

Q2) a) Which of the following topologies are homeomorphic, explain your answer 1) (3 pt.) R and R^{2} with the standard topology on each.
2) (3 pt.) the left ray and the cofinite topology on R.
3) ($\mathbf{3} \mathbf{~ p t .) ~ (~} 0,1$) and R with the standard topology on each.
4) ($3 \mathbf{p t}$.) Z and N (where Z is the set of integer and N is the set of natural number)
b) $(6 \mathrm{pt}$.$) Show that \overline{A_{1} \times A_{2}}=\overline{A_{1}} \times \overline{A_{2}}$
c) (6 pt.) For R^{2} with the product topology induced by the base $R_{\text {standard }} \times R_{\text {standard }}$. Let $A=N \times(0, \infty), B=\left\{(x, y) \subseteq R^{2}: \mathbf{x}-\mathbf{y}=1\right\}$ find

$\operatorname{Int}(\mathrm{A})=$	$\mathrm{Bd}(\mathrm{A})=$	$\mathrm{A}^{\prime}=$	$\vec{A}=$
$\operatorname{Int}(\mathrm{B})=$	$\mathrm{Bd}(\mathrm{B})=$	$\mathrm{B}^{\prime}=$	

Q3) a) (5 pt.) Show that $f:\left(\mathrm{R}, \mathrm{R}_{\text {standard }}\right) \rightarrow\left(\mathrm{R}, \mathrm{R}_{\text {stardard }}\right)$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ is continuous.
b) Give example to show that the following is not hold:

1) ($\mathbf{2} \mathbf{p t}$.) T_{0}-space $\rightarrow \mathrm{T}_{1}$-space.
2) (2 pt.) Regular $\rightarrow T_{2}$-space.
3) (2 pt.) Every injection function is continuous.
c) (4 pt.) Show taht T_{4}-space $\rightarrow \mathrm{T}_{3}$-space.

Q4) a) Let $\mathrm{A}=\{(a, b): a, b \in R\} \cup\{\{0\}\}$

1) (5 pt.) Show that A be considered as a basis for some topology τ on R ?
2) ($\mathbf{2} \mathbf{~ p t}$.) Explain Why \mathcal{T} is not the standard topology on R ?
3) ($\mathbf{3} \mathrm{pt}$.) Compare with $R_{\text {standard }}$ and \mathcal{T}.
b) Let $f, g:\left(R, \tau_{\text {syyandard }}\right) \rightarrow\left(R ; \tau_{\text {standars }}\right)$ be continuous functions. Prove or disprove:
4) ($\mathbf{3} \mathbf{p t}$.) the set $\{x \in R: f(x) \leq g(x)\}$ is closed.
5) ($\mathbf{3}$ pt.) the function $h:\left(R, \tau_{\text {styandard }}\right) \rightarrow\left(R, \tau_{\text {slandars }}\right)$, defined as $h(x):=\max \{f(x)$, $g(x)\}$ for $x \in R$ is continuous.
c) ($\mathbf{5} \mathbf{p t}$.) Show that (X, τ) is Hausdorff space iff the set $D=\{(x, x) \in X \times X: x \in X\}$ is closed in $X \times X$.
```
مع تمنباتـا بالثوفيق
```

STATE OF PALESTINE
Faculty of Applied Science
Time: Two Hours
Date: 31/5/2018 "second semester 2017-2018"

年安
جا جعة|1الأصى

Department of Mathematics AbstraotiAdebra 1-(A4ath 3313$)$
Finat Exam: -

اسم الطالب/ة:	Q1	Q2	Q3	Q4	Q5	Q6	Total
اللر قَم الأكاديمي:	10	10	10	10	11	9	60
مدرسن الهساق: د. أحمد محود الأشقفر							

Answer all the following questions:

ملاحظة: الومتحان 6 أسنثلة ، في 6 صفدات

(Q1) (i) Mark each of the following True $(\sqrt{ })$ or False (\times) :
(5 marks)
) (1) Let $a, b \in G$ (G is a group). If $|a|=12$ and $|b|=35$ then $\langle a\rangle \oplus\langle b\rangle$ is cyclic group.
)(2) If $G=\left(\mathbb{R}^{*},{ }^{\bullet}\right)$ and $H=\left(\mathbb{R}^{+} \bullet \bullet\right)$, then the index $|G: H|=\infty$.
)(3) Let $\phi: G \rightarrow \bar{G}$ be a group homomorphism. If $g \in G$ with finite order, then $|\phi(g)|$ divides $|g|$.
(4) The permutation $\alpha=\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 4 & 5 & 2 & 1 & 8 & 7 & 6 & 3\end{array}\right]$ is even .
(5) The relation $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{10}$ defined by $\phi(x)=(3 x) \bmod 10$ is a homomorphism .
(ii) Circle the correct answer for each of the following:
(1) Let $a \in G\left(G\right.$ is a group). Then $|a|=\left|a^{2}\right|$ iff $|a|$ is \ldots
(a) even
(b) odd
(c) ∞
(d) (borc)
(2) The order of the factor group $\left(\mathbb{Z}_{20} \oplus U(20)\right) /\langle(4,7)\rangle$ is ...
(a) 160
(b) 20
(c) 8
(d) 4
(3) The maximum order of any element in A_{8} is ...
(a) 15
(b) 18
(c) 7
(d) 12
(4) The group $\mathbb{Z}_{15} \oplus \mathbb{Z}_{4}$ isomorphic to \ldots
(a) $\mathbb{Z}_{30} \oplus \mathbb{Z}_{2}$
(b) $\mathbb{Z}_{12} \oplus \mathbb{Z}_{5}$
(c) \mathbb{Z}_{60}
(d) $\mathbb{Z}_{6} \oplus \mathbb{Z}_{10}$
(5) The order of the element $12+\langle 9\rangle$ in the factor group $\mathbb{Z}_{36} /\langle 9\rangle$ is \ldots
(a) 36
(b) 9
(c) 4
(d) 3
(Q2) (a) Let $G=\left\{\left[\begin{array}{ll}1 & a \\ 0 & b\end{array}\right]: a, b \in \mathbb{R}, b \neq 0\right\}$ under matrix multiplication, and

$$
H=\left\{\left[\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right]: x \in \mathbb{R}\right\}
$$

(i) Show that H is a subgroup of G.
(ii) Is $H \triangleleft G$? Justify your answer?
(b) Let $\beta \in S_{7}$ and suppose $\beta^{3}=(4316752)$. Find β in disjoint cycle form .
(Q3)(a) Let $\phi: G \rightarrow \bar{G}$ be a homomorphism, prove that $\phi(a)=\phi(b)$ iff $a \operatorname{Ker} \phi=b \operatorname{Ker} \phi$.
(b) Define $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$ by $\phi(x)=10 x(\bmod 30) \quad \forall x \in \mathbb{Z}_{12}$
(i) Show that ϕ is a homomorphism.
(ii) Find Ker ϕ.
(iii) Find $\phi^{-1}(20)$.
(iv) Choose: $\mathbb{Z}_{12} / \operatorname{Ker} \phi \quad \approx \ldots$. $\left(\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}, \mathbb{Z}_{10}\right)$
(1 mark)
(Q4)(a) Let G and H be finite cyclic groups. Show that $G \oplus H$ is cyclic iff $\operatorname{gcd}(|G|,|H|)=1$.
(b) Find two groups G and H such that $G \not \approx H$, but $\operatorname{Aut}(G) \approx \operatorname{Aut}(H)$.
(c) Let G be a group with the following property: "If $a, b, c \in G$ and $a b=c a \Rightarrow b=c$ ". Prove that G is Abelian.
(Q5)(a) Determine the number of elements of order 15 and the number of cyclic subgroups of order 15 in $\mathbb{Z}_{30} \oplus \mathbb{Z}_{20}$.
(3 marks)
(b)(i) Express $U(784)$ as an external direct product of groups of the form \mathbb{Z}_{k}. (3 marks)
"Hint: $784=16.49$ "
(ii) What is the largest order for elements in U (784).
(2 marks)
(c) Prove that A_{n} is normal in S_{n}.
(3 marks)
(b) Suppose G is finite Group of order n and $\operatorname{gcd}(n, k)=1$. If $g \in G$ and $g^{k}=e$, prove that $g=e$.
(3 marks)
(c) Suppose that G is a non-Abelian group of order p^{3} (where p is prime), and $Z(G) \neq\{e\}$. Prove that $|Z(G)|=p$.

Q1) a) Find $\frac{d y}{d x}$ for the following:

1) $y=\left(5 x^{2}+\sin 2 x\right)^{-\frac{3}{2}}$
2) $x^{2} \cot (5 x+10 y)=y \cos x$.
3) $y=\int_{x^{2}}^{\cos x} \sqrt{t+1} d t$
(3 marks)
b) Find the value (s) of \mathbf{C} that satisfying the mean value theorem for derivative

$$
\begin{equation*}
\text { if } f(x)=x+\frac{1}{x} \text { on }\left[\frac{1}{2}, 2\right] \tag{3marks}
\end{equation*}
$$

c) Find $\delta>0$ that show $\lim _{x \rightarrow 3} x^{2}+1=10$. "Take $\varepsilon=1$ ".

Q2) a) find the following limits:

1) $\lim _{x \rightarrow 1^{-}} \frac{\lceil x+1\rceil}{x}$.
(2 marks)
2) $\lim _{x \rightarrow-5^{+}} \frac{5-x}{x^{2}-25}$.
(2 marks)
3) $\quad \lim _{x \rightarrow 0} \frac{\sec 5 x}{x^{2} \csc ^{2} x}$
b) Sketch the graph of $f(x)=-(\sqrt{x+1})-2$

Q3) a) Evaluate the following integrals:

1) $\int \frac{2}{\sqrt[3]{x^{5}}}+\tan ^{2} x d x \quad$ (2 marks)
2) $\int \frac{3 x}{\sqrt{x^{2}+7}} d x$
(2 marks)
3) $\int \cos ^{3} x \sin ^{16} x d x$
(2 marks)
4) $\int 3 x^{5} \sqrt{x^{3}-2} d x$
(2 marks)
b) Find asymptotes and sketch the graph of the function $y=\frac{x^{2}-3}{x-2} \quad$ (4 marks)

Q4) Let $f(x)=x^{4}-4 x^{3}+5$
(a) List the intervals on which $f(x)$ is increasing and decreasing, then find the local extreme values of $f(x)$.
(3 marks)
(b) List the intervals on which $f(x)$ is concave up and concave down, then find the inflection points (if eisxt).
(c) Sketch the graph of $f(x)$.
(3marks)
(a) Find the area of the region enclosed by the parabola $y=4-x^{2}$ and the line $y=2-x$. (4 marks)
(b) Find the volume of the solid generated by revolving the region in the first quadrant bounded by the curve $y=\sqrt{x}$ and the lines $y=2$ and $x=0$ about the x-axis.

1) The domain of the function $f(x)=\frac{1}{\sqrt{x^{2}-16}}$ is :
a) $(-4,4)$
b) $(-\infty,-4) \cup(4, \infty)$
c) $\mathfrak{R}-\{-4,4\}$
d) \mathfrak{R}
2) The range of the function $f(x)=\sqrt{16-x^{2}}=$
a) $(-4,4)$
b) $[0,4]$
c) $[0, \infty)$
d) \mathfrak{R}
3) The period of the function $f(x)=\tan \left(\frac{x}{3}\right)$ is :
a) $\frac{\pi}{3}$
b) 3π
c) $\frac{2 \pi}{3}$
d) 2π
4) The vertical asymptote(s) of the function $f(x)=\frac{x^{2}-2 x-3}{x^{2}-1}$ is (are) :
a) $x=1$
b) $x=-1$
c) $x= \pm 1$
d) there are no vertical asymp.
5) $\sin ^{2} x=$
a) $\frac{1-\cos 2 x}{2}$
b) $\frac{1+\cos 2 x}{2}$
c) $1-\cos ^{2} x$
d) a and c
6) If $f(x)=\cos ^{2}(3-x)$, then $f^{\prime}(0)=$
a) $-2 \cos 3$
b) $2 \sin 3 \cos 3$
c) $6 \sin 3 \cos 3$
d) $-2 \sin 3$
7) The solution set of the inequality $\frac{6}{x+3} \geq 1$ is
(a) $(-\infty, 3]$
(b) $[3, \infty)$
(c) $(-3,3]$
(d) $[-3,3]$
8) $\int_{-\pi}^{\pi} \sqrt[3]{x}+\sin ^{5} x d x$
a) 2π
b) π
c) 0
d) 1
9) $\lim _{x \rightarrow 0} \tan \left(\frac{\sin x}{x}-1\right)=$
a) 1
b) 0
c) $\sqrt{3}$
d) the limit does not exist
10) At $x=0$, the function $f(x)=x^{\frac{1}{3}}$
(a) has an inflection point
(b) has a vertical tangent
(c) is continuous
(d) all of them is true.

Department of mathematics
Complex Analysis (Math 3311)

Date: 27-5-2018
Final Exam

Answer all of the following questions:

Q1) a) (6 pt.) Show that the function $f(z)=\sinh x \cos y+i \cosh x \sin y$ is differentiable and find $f^{\prime}(z)$ as a function of z. What about the function $g(z)=$ sinh x cos $-i$ cosh x siny ? explain.
b) (6 pt.) Find all complex solutions z for the equation $\sin (z)+3 \cos (z)=1$

Q2) a) (6 pt.) Show that the function $f(z)=(\bar{z})^{2}+z$ is not analytic.
b) ($\mathbf{2} \mathbf{p t}$.$) Compute \cos (\pi+\mathrm{i})$.
(c) $(6$ pt.) Find all $z \in C$ such that $\exp (2 z)=\sqrt{3}-i$

Q3) a) (6 pt.) Show that $|\sinh z|^{2}=\sinh ^{2} x+\sin ^{2} y$. (4 marks)
b) (6 pt .) Find the principal value of the following complex power $(-i)^{i}$

Q4) a) (6 pt.) Suppose z_{0} is any constant complex number interior to any simple closed curve contour C . Show that for a positive integer n ,

$$
\oint_{C} \frac{d z}{\left(z-z_{0}\right)^{n}}= \begin{cases}2 \pi i, & n=1 \\ 0 & n>1\end{cases}
$$

b) (6 pt .) Let C be the curve given by a half-circle from 1 to -1 (positively oriented) followed by a straight line from -1 to 1 . Compute the integral

$$
\int_{C}(z+1+\bar{z}) d z
$$

(c) (6 pt.$)$ Compute the values of the following complex line integrals.
(a) $\int_{z=4} \frac{z^{3}+z+1}{(z-1)^{3}} d z$
(b) $\int_{z=4} \frac{z^{3}+z+1}{z^{3}-6 z^{2}+5 z} d z$
d) (4 pt.) Without evaluating the integral, show that

$$
\left|\int_{e} \frac{d z}{v^{2}-1}\right| \leq \frac{\pi}{3}
$$

where C is the arc of the circle $|z|=2$ from 2 to $2 i$ that lies in the first quadrant

Q5) a) ($\mathbf{5} \mathbf{~ p t}$.) Prove that if $\mathrm{f}(\mathrm{z})$ and $f(\bar{z})$ are both analytic in a domain D , then $\mathrm{f}(\mathrm{z})$ is constant in D .
b) (5 pt.) Prove that an analytic function ! : $\mathrm{C} \rightarrow \mathrm{C}$ satisfying $|\mathrm{f}(\mathrm{z})| \leq 4$ for any $\mathrm{z} \in$ C must be constant

Time: 2 hours
\ldots. .Final Exam. For the $2^{\text {nd }}$ sem. of the year 2017/2018 Course: Introduction to L.P. and O.R.

AL-AQSA UNIVERSITY

Science Block
Math. Dep.

Name:-
Solve the following questions:-
Q(1) a- If a L.P.P. has a feasible solution then show that it also has a basic feasible solution
(10marks)
b- For the following L.P.P.
Maximize $Z=X_{1}+2 X_{2}+4 X_{3}$
Subject to the constrants

$$
\begin{aligned}
& X_{1}+3 X_{2}+4 X_{3}=7 \\
& X_{1}+3 X_{2}+5 X_{3}=7 \\
& X_{1}, X_{2}, X_{3} \geq 0
\end{aligned}
$$

(1) Reduce the feasible solution ($1,2,0$) to a basic feasible solution. (10marks)
(2) What is the number of the basic solutions?
$Q(2)$ Use Simplex method to solve the following L.P.P.

$$
\operatorname{Max} Z=4 X_{1}+3 X_{2}-X_{3}
$$

Subject to the constrants
$2 X_{1}+3 X_{2}-5 X_{3} \leq-30$
$X_{2}, X_{3} \geq 0$
X_{1} Unrestricted in sign

Q(3) Using the Big M-method solve the following L.P.P. (For only one iteration)
Maximize $Z=2 X_{1}+X_{2}+3 X_{3}$
Subject to the constrants

$$
\begin{align*}
& X_{1}+X_{2}+2 X_{3} \leq 5 \tag{12marks}\\
& 2 X_{1}+3 X_{2}+4 X_{3}=12 \\
& X_{1}, X_{2}, X_{3} \geq 0
\end{align*}
$$

Q(4) We have 4-jobs each of which has to go through 3-machines in the (12 marks) order $M_{1} M_{2} M_{3}$

Processing time (in hours) is given below

Job/Machine	M1	M2	M3
A	12	6	5
B	8	7	8
C	7	2	10
D	10	5	9

Determine a sequence that minimizes the total elapsed time and hence find the total elapsed time , Idle time for each machine.

Q(5) A project consists of 14 activities A,B,C,...M,N the notation $X<Y$ means
that the activity X must be finished before Y can begin, with this notation
A $<\mathbf{D}, \mathrm{H} ; \mathbf{B}<\mathbf{E} ; \mathbf{C}<\mathbf{I}, \mathrm{F} ; \mathrm{D}<\mathrm{G} ; \mathbf{H}, \mathrm{L}<\mathbf{M} ; \mathbf{E}, \mathrm{I}<\mathrm{L} ; \mathrm{E}, \mathrm{F}<\mathrm{K} ; \mathrm{E}, \mathrm{I}<\mathrm{J} ; \mathbf{G}, \mathrm{J}, \mathrm{K}<\mathrm{N}$.
The time in days of completion of each activity is as follows:-

Activity	A	B	C	D	E	F	G	H	I	J	K	L	M	N
Time	13	8	8	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1 8}$	$\mathbf{8}$	$\mathbf{1 3}$	$\mathbf{3}$	$\mathbf{8}$	18	$\mathbf{3}$	$\mathbf{2 3}$

(i) Draw the project network
(ii) Determine the earliest and latest starting and completion times of activities.
(iii) Identify the critical path

STATE OF PALESTINE AL-AQSA UNIVERSITY

Faculty of Applied Science
 Linear Algebra II (MATH 2317) Instructor: Dr. Mohammad Hamoda

Date: 24/05/2018 Final Exam Time: Two Hours There are 6 questions in 6 pages
Read the questions carefully. Be neat and organized.
Question(1):- Mark True or False: [15 marks]

1. [] The column vectors of an $n \times n$ matrix A span \mathbb{R}^{n} iff the orthogonal complement of the row space of A is $\{0\}$.
2. [] If A^{2} is an invertible matrix, then $\lambda=0$ is an eigenvalue of A.
3. [] The set of vectors $\{(2-3 i, i),(3+2 i,-1)\}$ is a basis for the Euclidean complex vector space \mathbb{C}^{2}.
4. [] Let V be the vector space of all complex-valued functions, then the vectors $f=3+3 i \cos 2 x, g=\sin ^{2} x+i \cos ^{2} x$ and $h=\cos ^{2} x-i \sin ^{2} x$ are linearly dependent.
5. [] If v_{1}, v_{2} and v_{3} come from different eigenspaces of A. then it's impossible to express v_{3} as a linear combination of v_{1} and v_{2}.
6. [] If A is diagonalizable matrix, then there is a unique matrix P such that $P^{-1} A P$ is a diagonal matrix.
7. [] Between any n--dimensional vector space and \mathbb{R}^{n}, there is exactly one isomorphism.
8. [] The row space of a matrix is isomorphic to its column space.
9. [] Any vector space is isomorphic to one of its proper subspaces.
10. [] An $n \times n$ matrix A is diagonalizable ff there is a basis of \mathbb{R}^{n} consisting of eigenvectors of A.

Question(2):- [12 marks]
(I) Find bases for the eigenspaces of the matrix:

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right] \quad[5 \text { marks }]
$$

(II) Find a vector u in \mathbb{R}^{4} that is orthogonal to $v=(1,0,0,0)$ and $u=(0,0,0,1)$, and makes equal angles with $b=(0,1,0,0)$ and $c=(0,0,1,0)$. [4 marks]
(III) Give a definition of: Orthogonally diagonalizable matrix - Quadratic form. [3 marks]

Question(3):- [11 marks]
(I) Find the geometric and algebraic multiplicities of the matrix:
$A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right] . \quad$ Is A diagonalizable? Explain. $\quad[6$ marks]
(II) Prove that if λ is an eigenvalue of A, x is a corresponding eigenvector and k is a scalar, then $\lambda-k$ is an eigenvalue of $A-k I$, and x is a corresponding eigenvector. [5 marks]

Question(4):- [11 marks]
(I) Use the method of diagonalization to solve the system:

$$
\dot{y}_{1}=y_{1}+4 y_{2} \quad, \quad \quad \dot{y}_{2}=2 y_{1}+3 y_{2} . \quad[6 \text { marks }]
$$

(II) Let $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right) \in \mathbb{C}^{2}$. Is $\langle u, v\rangle=u_{1} \overline{v_{1}}$ defins a complex inner product on \mathbb{C}^{2} ? Clarify your answer. [5 marks]

Question(5):- [10 marks]
(I) Classify the quadratic form $x_{1}^{2}-x_{2}^{2}$ as positive definite, positive semidefinite, negative definite, negative semidefinite, or indefinite. [5 marks]
(II) Express the quadratic form $\left(c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}\right)^{2}$ in the matrix notation $x^{\top} A x$ where A is symmetric. [5 marks]

Question(6):- [11 marks]
(I) Let P_{2} be the set of all polynomials of degree 2 and P_{3} be the set of all polynomials of degree 3. Show that $f: P_{2} \longrightarrow P_{3}$ given by

$$
a_{0}+a_{1} x+a_{2} x^{2} \longmapsto a_{0} x+\frac{a_{1}}{2} x^{2}+\frac{a_{2}}{3} x^{3} \quad \text { is a homomorphism. Does } f \text { an }
$$ isomorphism? Explain. [6 marks]

(II) Let V, W be any two vector spaces and let $f: V \rightarrow W$ be a homomorphism, suppose that $f\left(v_{1}\right)=w_{1}, f\left(v_{2}\right)=w_{2}, \cdots, f\left(v_{n}\right)=w_{n}$ for some vectors $w_{1}, w_{2}, \cdots, w_{n}$ of W. If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is linearly independent. Does the set. $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ linearly independent? Clarify your answer. [5 marks]

Good Luck

A) Find the order of convergence of Newton's method
A) Starting with the definition of forward difference show that $D=\frac{1}{h} \operatorname{Ln}(1+\Delta)$

Question (2)

[25 Marks]
Given the evenly spaced data of $\left(x_{i}, f_{i}\right)$ values

x_{i}	1	2	3	4	5	6
f_{i}	0.5	0.6	0.2	0.8	1.2	1.5

a) Use the Newton-Gregory forward polynomial of degree two to estimate $f(2), f^{\prime}(2)$.
b) Use the central-difference formula to estimate $f^{\prime}(3)$.
c) Use the central-difference formula to estimate $f^{\prime \prime}(4)$.
d) Use the data of the table to find $\int_{1}^{6} f(x) d x$ using Simpson's $\frac{1}{3}$ - rule.

Question (3)

[15 Marks]
A) Find he local truncation error of Trapezoidal rule
A) Use the modified Newton's Method to solve the non-linear system.

$$
\begin{array}{r}
x+2 y=3 \\
2 x^{2}+y^{2}=5
\end{array}
$$

Start with $x^{(0)}=(-0.9,2.25)^{\top}$ for two iterations.
b) Use Newton's method on the equation $x^{3}=N$ to drive the algorithm

$$
x_{i+1}=\frac{1}{3}\left(2 x_{i}+\frac{N}{x_{i}^{2}}\right)
$$

$2018 / 5 / 26$ \square التّاز ن \qquad 0 \qquad الز		الإختبار النهاتي في مسلق (أسناسيات رياضيات) (MATH 1211)	الفصل الثُاني 2017-2018-2 م الفترة الثاتية
الإرجة:		رقّ الطلآل/ة.	اسم الطالب/ة:

أجب/ي عن الانسينلة التالية

(كل فقرة أربعة درجات)

$$
\frac{3(5 x-2)}{2}+\frac{1}{3}=\frac{x-4}{6} \text { أوجد/ي حل المعادلة }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { 2) أوجد/ي حل المعادلة } x^{1 / 2}+3-4 x^{-1 / 2}=0 \quad \text { 2 }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 3) هـ هو الحد الاي سيضاف إلي التعبير الجبري $x^{2}-4 k x$ للحصول علي بريع كامل.
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { 4) أوجد/ي قيمة k التي تجعل للمعادلة جدرين حقيقين متساويين } 0=0 \text { (} 2 x^{2}+k x+8 \text {. }
$$

\qquad
\qquad
\qquad
\qquad

..

\qquad
\qquad
\qquad
\qquad
\qquad

$(321)_{5} \times(13)_{5}=$
 1) أوجد/ي ناتج
 اللسون

$$
\begin{gathered}
5 x+3 y=4 \\
x+3 y=-4
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3) أوجد/ي حل المعادلة بطريقة التحليل..
\qquad
\qquad
\qquad
\qquad

$$
\frac{x}{x-2}=\frac{2}{3} \quad \text { أوجد/ي حل المعادلة }
$$

\qquad
\qquad
\qquad
\qquad

$$
\text { 5 أوجد/ي حل المعادلة } x-6 \sqrt{x}+8=0
$$

\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { (كل فقرة خـسة درجات) } \\
& \text { النسؤال الثنالث : } \\
& {[(A \wedge B) \leftrightarrow(C \rightarrow \bar{C})] \vee \bar{B} \quad \text { 1)أكتب/ي جدول الصدق للقضبة التّلية وبين/ي ما نوعها }}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { 2) أوجش/ي حن المعادلة } \sqrt{2 x-1}=1+\sqrt{x-1}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& 3 \\
& 4+8+12+\ldots+4 n=2 n(n+1), \quad \forall n \in N
\end{aligned}
$$

\qquad
4) أوجد/ي ناتج

\qquad
\qquad
\qquad
\qquad

Slate of palestine
27-05-2018
Faculty of Applied Science
Time: Two Hours
Date: 27/5/2018 "second semester 2017-2018"

AL-AQSA UNIVERSITY Departmēnt of Mâthematics Comptex'Aratysisl (NFath 33:3) FinalExam

السم الطالبة:	Q1	Q2	Q3	Q4	Q5	Q6	Total
النرقم الأكاديمى:	10	11	9	8	12	10	60

(b) Show that $\lim _{z \rightarrow \infty} f(z)=w_{0}$ iff $\lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0}$
(c) Use part (b) to find $\lim _{z \rightarrow \infty} \frac{3 z^{2}-i}{i z^{2}+3}$
(Q2)(a) Sketch the set $G=\{z \in \mathbb{C}:|z-4|<|z|\}$ in the complex plane, and find its closure.
(b) For any complex number $z=x+i y$ show that $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$, and use this to show that $\quad|\sinh y| \leq|\sin z| \leq \cosh y$.
(c) Find the set of all accumulation points of the set $K=\left\{(-1)^{n} \frac{(1+i)(n-1)}{n}: n \in \mathbb{N}\right\}$. (3 marks)
(Q3)(a) Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic, then find a harmonic conjugate $v(x, y)$.
(4 marks)
(b) Show that the function $f(z)=e^{-\theta} \cos (\ln r)+i e^{-\theta} \sin (\ln r)$ is differentiable in the domain $(r>0,0<\theta<2 \pi)$. and find $f^{\prime}(z)$.
(5 marks)
(Q4) (a) Find all complex number z such that $e^{2 z-3}=1+\sqrt{3} i$
(b) Show that $\tan ^{-1} z=\frac{i}{2} \log \frac{i+z}{i-z}$. Then find all solutions of the equation $\tan z=3 i$.
(Q5)(a) Evaluate $\int_{C} \frac{z+2}{z} d z$. where C is the semicircle $z=2 e^{i \theta},(\pi \leq \theta \leq 2 \pi)$. (4 marks)
(b) Without evaluating the integral, show that $\left|\int_{C} \frac{\log z}{z^{3}} d z\right|<2 \pi\left(\frac{\pi+\ln R}{R^{2}}\right)$, where C denotes the circle $|z|=R(R>1)$, taken counterclockwise.
(c) Let a function $f(z)$ be analytic in a domain D. If $|f(z)|$ is constant in D, prove that $f(z)$ must be constant in D.
(b) Evaluate the following integrals:
(1) $\int_{C} \frac{d z}{\left(z^{2}+9\right)^{2}} d z$, where C denotes the positively oriented circle $|z+2 i|=3$. (4 marks)
(2) $\int \frac{e^{z} \cos z}{(z+3 i)(z-i)} d z$. where C denotes the positively oriented circle $|z|=2$. (4 marks)

Answer the following questions:

1. Find the area of the region between the graphs $y=4-x^{2}$ and $y=-x+2$ where $-2 \leq x \leq 3$
2. Find the horizontal asymptotes of $\quad f(x)=\frac{3 x}{\sqrt{2 x^{2}-5}}$
3. Find $\lim _{x \rightarrow 0} \frac{x-\tan 7 x}{2 x}$
4. Find the domain and range of $f(x)=\frac{5}{1-\sqrt{x}}$
5. Find $\int_{y} \frac{\tan ^{2}(x) \sec ^{2}(x) d x}{\left(1+\tan ^{3}(x)\right)^{5}}$
6. Find $\frac{d y}{d x}$:
(i) $y=\cos ^{4}\left(\csc ^{2}(3 x)\right)$
(ii) $\quad y=\int_{\sqrt{x}}^{x^{2}} \frac{d t}{1+t^{2}}$
(iii) $\int_{\sqrt{x}}^{x^{3}} \frac{d t}{t+\sin (t)}$
7. Find $\lim _{x \rightarrow-5} \sqrt{1-3 x}$, then find $\delta \succ 0$ that works for $\varepsilon=0.5$
8. Find increasing, decreasing intervals, local extreme values, i for the curve $f(x)=x^{4}-4 x^{3}$
9. Find the average value of $f(x)=\sec ^{2}(x)$ on $\left[0, \frac{\pi}{4}\right]$
10. Find $\int^{3} \sqrt{7+x^{2}} d x$
11. Find the volume of the solid generated by revoling the region bounded by the curves $y=\sqrt{x}, y=2$ and $x=0$: (i) about $y=2$
(ii) about $\quad x=5$
12. Find the asymptotes of the graph of $f(x)=\frac{3 x^{2}}{x+1}$ and sketch the graph of $f(x)$.
13. Find:
$\int_{0}^{\frac{\pi}{10}} \cos ^{2}(5 x) d x$
14. Use the Max-Min inequality to find a lower bound for the value of the integral

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1+3 \csc (x)} d x
$$

15. Find the value of c that satisfies the Mean Value Theorem
(for derivatives) for $f(x)=x+\frac{1}{x}$ on [1, 2]

ك

偣

a) Convergent
b) divergent
c) may converge or may diverge.
d) none of the above
2) The series $\sum_{n=0}^{\infty} \frac{(-1)^{2 n+1}}{3^{n}}$ is
a) alternating series
b) geometric series
c) power series
d) a and b
3) $\cosh ^{2} x-\sinh ^{2} x$ equal to
a) 1
b) $\cosh (2 x)$
c) e^{x}
d) non of the above
4) If the points (r, θ) and $(-r,-\theta)$ lie on the graph of the curve $r=f(\theta)$, then the graph is symmetric about:
a) X-axis
b) $Y-a x i s$
c) the pole(origin)
d) all the above
5) The sum of the series $\sum_{n=0}^{\infty}\left(\frac{-1}{9}\right)^{n}$ is equal to:
a) $\frac{9}{8}$
b) $\frac{1}{8}$
c) $\frac{9}{10}$
d) $\frac{1}{10}$
6) The parabola $x=-2 y^{2}$ has focus at:
a) $\left(0,-\frac{1}{8}\right)$
b) $\left(-\frac{1}{8}, 0\right)$
c) $(0,-8)$
d) $(-8,0)$
7) The polar coordinates of the center of the circle $r=-8 \sin \theta$ is:
a) $\left(-4, \frac{\pi}{2}\right)$
b) $\left(-4,-\frac{\pi}{2}\right)$
c) $\left(4,-\frac{\pi}{3}\right)$
d) $\left(4, \frac{\pi}{2}\right)$
8) The domain of $y=\log _{7} x$ is
a) $(-\infty, \infty)$
b) $(0, \infty)$
c) $[0, \infty)$
d) $\mathfrak{R}-\{0\}$
9) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$
a) diverges
b)converges
c) absolute converges
d) may converge or may diverge
10) The polar equation which equivalent to the Cartesian equation $x y=1$ is
a) $r^{2}+r \sin \theta=1$
b) $r^{2} \sin (2 \theta)=2$
c) $r=1+\sin \theta \cos \theta$
d) $r=1$
a) Find $\frac{d y}{d x}$, if $y=\log _{3}\left[\cos ^{-1}(\tanh x)\right]+7^{\sec x}$
b) Consider the function $f(x)=x+2 \sqrt{x}$. Find $\left(\frac{d f^{-1}}{d x}\right)_{x=8}$
c) Solve for x :
$\ln (x-2)=4+\ln x$
d) Find the following limit:
$\lim _{x \rightarrow 0^{+}}[\cos (\sqrt{x})]^{\frac{1}{x}}$
a) Find the center, foci, vertices, and asymptotes of the conic section: $4 x^{2}-9 y^{2}+4 x+54 y+44=0$.
b)_Find the radius and the interval of convergence (abs. conv., cond. Conv.) of the power series: $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{\sqrt{n}}$.
a) Find Taylor series about zero $(\mathbf{a}=0)$ generated by the function $f(x)=\cos (2 x+\pi) . \quad$ [3 marks]
b) Find binomial series generated by the function $f(x)=\frac{1}{\sqrt{x+2}}$.
c) Let $r=\frac{8}{2+2 \sin \theta}$ be an equation of conic section with one focus at the origin:
a) Identify the conic section.
b) Find the directrix that corresponds to the focus at the origin.
c) Sketch it's graph.
a) let $r=2+4 \sin \theta \quad$ [4 marks]

1) Sketch the graph of the curve.
2) Find the area inside the curve.
b) Test the convergence for each of the following:
3) $\sum_{n=1}^{\infty} \frac{4}{(3 n+1)(3 n-1)}$ (2 marks)
4) $\sum_{n=1}^{\infty} \frac{e^{n}}{(2 n)!}$
(2 marks)
5) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n+5}{n}\right)^{n}$
6) $\int_{1}^{e} \frac{1}{x \ln (x)} d x$

Q6) Find the following integral

1) $\int x^{4} \log _{3} x d x$
(3 marks)
2) $\int_{\ln 2}^{\ln 3} \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$ (3 marks)
3) $\int \frac{x^{\ln x} \cdot \ln x}{x} d x$ (3 marks)

$\vec{A}=\operatorname{Sin} u \hat{i}+\operatorname{Cos} u \hat{\mathrm{j}}+5 \mathrm{u} \hat{\mathrm{k}}$
$\vec{B}=\operatorname{Cos} u \hat{i}-\operatorname{Sin} u \hat{j}+5 \hat{k}$
$\vec{C}=3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
(8 درجات)

$$
\frac{d}{d u}[\vec{A} \oplus(\vec{B} \times \vec{C})] \text { أوجد }
$$

$$
\begin{aligned}
& \text { السؤال الثاني:- } \\
& \text { هل مجال القوة } \\
& \vec{F}=\left(y^{2} z^{3} \cos x-4 x^{3} z\right) \hat{i}+2 y z^{3} \sin x \hat{j}+\left(3 y^{2} z^{2} \sin x-x^{4}\right) \hat{k} \\
& \text { (12 درجة) } \\
& \text { تحفظيا وإن كان كذلك أوجد/ي دالة الجهر العددي }
\end{aligned}
$$

السؤال الثتالث:-
1- أوجد المشتقة الاتجاهية للاالة العددية $\quad \Phi=3 x^{2} y-6 y^{3} z^{2} \quad \hat{i}-2 \hat{j}-2 \hat{k} \quad \hat{i}$ الاتجّاه (8 درجات)

$$
\begin{aligned}
& \vec{F}=\left(3 x^{2}+6 y\right) \hat{i}-14 y z \hat{j}+20 x z^{2} \hat{k} \quad \text { 2- احسبي الشثل المبذول لتحريك جسيم بواسطة القوة }
\end{aligned}
$$

(6 درجات)
السوّال الخامس: 1-1 إذا كان
(6 درجات)
$\vec{\nabla} \cdot(\vec{A} \times \vec{r}) \quad$ 2
(6 درجات)
$\vec{\nabla}|\bar{r}|^{3}=3 \vec{r} r \quad$ أَثبت أن

2018/5/26 ع

- inc u MATH 1313

اسسم الططلب/ة

I-True or False:- [10 Marks]

1. φ is an inductive set.
2. PMI is equivalent to $\mathbf{P C I}$.
3. $\{\{4\}\} \in\{1,2,3,\{4\}\}$.
4. If $A \subseteq B$, then $A^{c} \subseteq B^{c}$.
5. If A and B are finite sets, then $A-B$ is finite.
6. Every infinite set is uncountable.
7. Every finite set is countable.
8. Every subset of infinite set is finite .
9. $7+5=12$ iff $1+3=5$.
10. Every denumerable set is countable.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.

II- Prove the following :

1. Use contradiction to prove: $\varphi-\mathbf{A}=\varphi$. [5 Marks]
2. If $f: A \rightarrow B$, then $f \circ I_{A}=f$. [5 Marks]
3. Define a relation S on Z by: $x S y$ iff $x^{2}=y^{2}$ i- Prove that S is an equivalence relation.
ii. Describe the equivalence classes for S.
[3 Marks]
4. Prove that if $f: A \xrightarrow{1-1} B$ and $g: B \xrightarrow{1-1} C$, then $g \circ f: A \rightarrow C$ is $\mathbf{1 - 1}$ function. [6 Marks]

III-Solve all the following questions:-

1. Show that for any set A and $x \notin A$, then $A \approx A \times\{x\}$
i- 2. prove : $\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A}) \cap \mathbf{P}(B)$.
[5 Marks]
2. Given a function, $f(x)=x^{2}$
ii- Find $f^{-1}([1,4))$
iii- $f([1,2])$.
iii. $f((-1,2) \cup(2,3))$.
3. Use the PMI to prove $2+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-2, \quad \forall n \in N$
[6 Marks]
iv- Prove by any method: if S is finite and $x \notin S$, then $S \cup\{x\}$ is finite.

Solve the following questions:

(Q1)
(i)If G is not connected and $|V|=21$ then find the maximum number of edges in G (6 marks)
(iii) How many r-regions do the graph K_{30} has?
(4 marks)
(iv) Find a graph homeomorphic to $K_{2,2}$ with minimum number of edges (2 marks)
(Q2) (i)Let T be a binary tree of height h then show that T has between $h+1$ and $2^{h+1}-1$ vertices
(ii) If T is a full binary tree with 20 internal vertices then find the number of leaves (4 marks)
(iii) Represent the expression $\frac{\left(x y^{2}+3 x^{4}\right) z}{y+z^{2}}$ by a binary tree (3 marks)
(Q3)
(i) For which m and n does $K_{m, n}$ (6 marks)
1- Eulerian

2- Hamiltonian

3- Planar
(ii) Let $G=(V, E)$ be a connected planar simple graph with 30 vertices each of degree 4 Into how many regions does a representation of this planar graph splits the plane (4 marks)
(iii)Conceder the following graph

1- Is G has an Euler path? If yes find it

2- Is G a planar graph? If not why?
(4 marks)

3- Find the adjacency matrix for the graph
(2 marks)
(Q4) Find the minimal spanning tree for the following weighted graph (5 marks)

(Q5) Find a solution for the following Instant Insanity puzzle.

(Q6) 1- What are the chromatic numbers for the following?
I- C_{101} (cycle with 101 vertices)
II - $K_{2,25}$

2- Schedule the final exams for the following courses shown in the following Boolean matrix using fewest numbers of periods
$\left(\begin{array}{ccccccccc} & \text { Math115 } & \text { Math116 } & \text { Math185 } & \text { Math195 } & \text { CS 101 } & \text { CS } 102 & \text { CS 273 } & \text { CS 473 } \\ \text { Math115 } & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ \text { Math116 } & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ \text { Math185 } & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ \operatorname{Math195} & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ \operatorname{CS} 101 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ \operatorname{CS} 102 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ \operatorname{CS} 273 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ \operatorname{CS} 473 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right)$

1- True or False
i. The set of rotations form a commutative group.
ii. The composition of two primitives is a primitive.
iii. Translation fixes a line that is parallel to its vector.
iv. Reflection in the \mathbf{Y}-axis maps $(1,2)$ to $(-1,-2)$.
v. Reflection in the axis passes through the origin with angle 0 fixes the vertical lines .
vi. The set of all similarities of negative ratio forms a group.
vii. Primitive transformation fixes a line pointwise.
viii. Affine transformation preserves the area of the triangle.
ix. Every similarity is an isometry.
x. Similarity of ratio $k=2$ preserves the surface of the circle .

i.	ii.	iii.	iv.	v.	vi.	vii.	viii.	ix.	x.

2 - Show that the set of all transformations of the form:

$$
T: \begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=k y
\end{aligned} \quad, k \succ 0
$$

Forms a group.
-3- Given a transformation \mathbf{T} by :

$$
T: \begin{aligned}
& x^{\prime}=2 x+3 y+1 \\
& y^{\prime}=6 x+4 y+2
\end{aligned}
$$

Decompose \mathbf{T} into primitive transformations.

4- Given a transformation T by :

$$
T: \begin{aligned}
x^{\prime} & =\frac{1}{2} x+\frac{\sqrt{3}}{2} y \\
y^{\prime} & =\frac{\sqrt{3}}{2} x-\frac{1}{2} y
\end{aligned}
$$

i. Show that \mathbf{T} is a reflection.
ii. Find the axis of T.
iii. Find the image of the line $y=\sqrt{3} x$.

6- Find the equation of the radial similarity with center (a, b) and ratio k.
$7-\quad$ Show that the similarity with ratio k maps the circle with area \mathbf{A} to the circle with area $k^{2} \mathbf{A}$. [6 Marks]

8- Prove that the translation preserves the collinearity.
[6 Marks]

انتهت الأسيلة

نظرية الاحتمالات

$$
5 \text { كرات حمراء و } 6 \text { كرات صفراء؟ }
$$

2 2 (رديتان) كم عدد التبديلات المختلفة الموجودة في أحرف كلمة "BOOK"

$$
\text { 3. (ررحتان) ماهو معامل } x^{2} y^{3} z^{3} \text { في }{ }^{8}(x+y+z) ؟
$$

(10 درجات)
النسوال الثاني: أثبت كلاً ممايني:

$$
p(\phi)=0 \quad\left(\begin{array}{l}
(3) \\
\hline \text { درجات }
\end{array}\right]
$$

$$
p(A \mid B) \geq \frac{a+b-1}{b} \text {. } p \text { فإن } p(B)=b \text {, } p(A)=a \text { (3) درجات) اذا كان }
$$

$$
\sum_{r=0}^{n} r\binom{n}{r}=n 2^{n-1 \quad(ت ر) 4)} \cdot 3
$$

(8 درجات)
السؤال الثالثت: أجب حسب المطوب:

$$
\text { بنفس المعلمة } \lambda \text {. أوجد اللنوزيع الاحتمالي للمتغير } Y \text { حيث } Y \text { بيث }
$$

$$
\text { . } Y=\ln (X) \text { للمتغير } Y \text { (pdf) }
$$

(15 درجة)
النسؤل الرايع: أجب حسب المطلوب:

$$
\text { 1. إذا كان } X \sim N(5,25)
$$

أ.

$$
\text { ب. (3 دريات) أوجد قيمة } a \text { حيث } p(X>a)=0.90
$$

2. (3 درهات) إذا كانت ماكثة معينة تحتنا إلى تصليح بمعدل مرة واحدة كل 3 سنوات، ما احتمال أن تعمل الماكنة لمدة على الأفل 5 سنوات دون الحاجة إلى تصليح؟ 3. (3 دريات) إذا كان احتمال شخص ما يصدق إنثاعة = 0.75، فما احتمال أن الثنخص الثامن الأي
يسمع الإثشاعة هو الثخـص الخامس الذي يصدقها؟
3. (3 دربات) تقدم 12 شخص لوظيفة ما، 8 أثنخاص منهم مؤهلين، اذا تم اختيار 5 أثشاص منهم بشكل عشوائي للمقابلة، فما احتمال أن يكون منهم 2 فقط مؤهلبن إذا كان السحب بإرجاع؟
(9 درجات)
السؤال الخامس: إذا كان $f(x, y)$ تعطى من خلال الجـول التالي:

		X			
		-1	0	1	
	-1	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	
	1	$\frac{1}{6}$	0	$\frac{1}{6}$	

$$
\text { 1. } \operatorname{Cov}(X, Y) \text { رَبات) أوجد }
$$

2. 2
(12 درجات)
السؤلّ السادس:
إذا كان

$$
f(x, y)=e^{-x-y}, x>0, y>0
$$

$$
\text { أوجد } W=3 X+4 Y-5 \text { Var }
$$

(5 درجات)
السؤال الإضافي: BONUS

$$
\text { 1. } 1
$$

مع تمنياتي للجميع بالنجاح والنتوق

Some Formulas:

Table III: Standard Normal Distribution

z	(1)	. 01	. 02	. 03	(1)4	05	. 06	. 07	. 08	. 09
0.0	. 0 (00)	. 0040	. 0180	. 1120	. 0160	. 0199	. 12.39	. 1279	. 0319	. 0354
0.1	. 0398	. 0438	. 0478	. 051217	. 05557	. 0506	.)636	. 0675	. 1714	. 0753
(0.2	. 0793	. 0832	. 1871	.(9)10	. 0948	. 0987	.1026	. 1064	. 1103	. 1141
0.3	1179	. 1217	. 1255	. 1295	. 1331	. 1368	. 14106	. 1443	. 1480	. 1517
10.4	. 1554	. 1541	. 1628	. 1664	. 1700	. 1736	. 1772	.1808	. 1844	. 1879
0.5	. 1415	.1450	. 1985	. 2019	. 20.54	2088	. 2123	. 2157	. 2190	. 2224
(1.6	. 2257	2291	. 2324	. 2357	. 2384	. 2422	. 2454	. 24×6	2517	. 2549
0.7	.2580	. 2611	2642	. 2673	. 27114	. 2734	. 2764	. 2794	. 2823	. 2852
0.8	. 2881	.2910	.2939	. 2967	. 2945	. 31023	. 3051	. 31178	. 3106	. 3133
(1.)	. 3154	. 3186	. 3212	. 3238	. 3264	. 3284	. 3315	334)	. 336.5	. 3389
1.1	. 3413	. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3594	. 3621
1.1	. 3643	. 366.5	. 3686	3708	. 3724	. 3744	. 3770	.3790)	. 3810	.3830
1.2	. 3844	. 3869	. 3888	3907	. 3925	3444	. 3962	. 3980	. 3947	. 4015
1.3	. 40.32	.404)	. 4066	4182	.4099	4115	. 41.31	4147	4162	. 4177
1.4	. 4192	4207	. 4222	4236	. 42.51	4265	.4274	4292	.4306	. 4319
1.5	. 4332	. 4345	. 4357	4370	43×2	4394	. 44116	4418	. 4424	. 4441
1.6	. 44.52	446.3	. 4474	4484	. 4495	. 4505	. 4515	. 4.525	.453.5	.4545
1.7	. 4554	4564	. 4573	. 4.582	. 4541	4599	. 46088	4616	. 4625	. 4633
1.8	. 4641	. 4649	. 46.56	. 4664	. 4671	4678	. 4686	. 4693	4699	47116
1.4	. 471.3	. 4719	. 4726	. 4732	4738	. 4744	4750)	. 47.56	. 4761	4767
2.0	. 4772	. 4778	.4783	. 4788	4743	. 4708	.48013	. 4808	. 4812	4817
2.1	4821	.4826	. 48.30	4834	4838	. 48.42	. 4846	4850	. 4854	4857
2.2	4861	. 4864	. 4868	4×71	. 487.5	4878	. 4881	4884	4887	. 48911
2.3	4893	. 4896	. 4898	4901	404	4016	. 4909	4911	4913	4916
2.4	. 4418	. 4920	. 4922	4925	+427	4424	4931	4932	4934	. 4936
2.5	49.8	. 4940	. 4941	.4)4.3	. 4945	4946	. 4948	. 4949	.4951	. 49.52
2.6	. 4953	. 4955	4956	. 4957	4959	4960	. 4961	. 4962	. 4963	. 4964
2.7	. 4965	. 4966	. 4967	4968	. 4969	4970	. 4971	. 4972	. 4973	4974
2.8	. 4974	.4975	. 4976	. 4977	.4977	.4978	.4979	4974	. 4980	. 4981
2.4	.4981	. 4982	. 4992	. 4983	. 4984	. 4984	4985	. 4985	. 4986	. 4988
3.1	. 4487	. 4087	. 4987	. 4988	4988	. 4988	. 4989	.4980	. 4990	. 4940

[^0]
[^0]: Also, for $z=4.0,50$, and 6.0 , the prohahifities are $0.49997,0.4999997$ and 0.49999999 .

